

User's Manual Version 4.9.1

Stan Weiss / World Wide Enterprises 1306 Wells Street Philadelphia, PA 19111-4922 E-mail: <u>srweiss1@comcast.net</u> Website: <u>http://www.magneticlynx.com/carfor/carfor.htm</u>

You can always get the latest User's Manual from my Web Site in PDF format http://www.magneticlynx.com/carfor/carfor.pdf

Copyright (c) 1987-2024 World Wide Enterprises. All Rights reserved. This documentation and the accompanying software are copyrighted materials. The law prohibits the making of unauthorized copies. Copying or duplicating this program except for personal use by the original owner is forbidden. No part of the software or documentation may be reproduced without the prior written permission of World Wide Enterprises. Unauthorized copying, duplicating, selling, or otherwise distributing the software is in violation of the Federal Copyright Law.

General Information

A Computer program designed for the automobile enthusiast that contains formulas that will help you to analyze your race or street vehicle's needs, and improve its performance. CARFOR incorporates a very intuitive user interface. If you wish to change a value simply click on the value or TAB to the value and enter a new one.

The most important thing to remember is that the more accurate your input to the program is, the more accurate the answer will be. So if unexpected results occur please double-check all your input data. If all checks out please email us. Because programs are not always perfect and there is always the possibility of a programming error. See **Reporting Problems** on next page. Although some examples may show only one or two decimal places the program will accept however many you key in, but any more then seven will not hold accuracy. Cells with a **green background** are used for both input and output, a **yellow background** is for user input only, and a **red background** is used by the program for it's calculated output. When you move the mouse over a command button a help window will show on the bottom of the form that gives you more information about which inputs are used by that command and what information will be calculated. See Page 5 for options on how to customize the Help output box. Please remember that these are theoretical answers. How will things like clutch / converter slippage, aerodynamic factors, tire growth, etc., affect your car?

In calculations that use volumetric efficiency, if this is an unknown factor, here are some typical estimates:

Stock smog motor	75%
Stock performance engine	80-85%
Modified performance engine	90-95%
NASCAR short-track engine	95-100%
All out drag engine	110-???%

NOTE: These values are at peak horsepower, and at very low RPM the stocker will have better volumetric efficiency than the modified engines.

NOTE: Remember that most dyno HP figures are converted to some standard conditions (SAE J607), usually sea level (14.69 PSI or 29.92 inches of Mercury, 60 degrees F and zero humidity). Later SAE (J1349) / factory rating use 29.31 inches of Mercury and 77 degrees F.

NOTE: Vehicle weight as used here is the weight of the vehicle with all fluids as raced and with the driver dressed for racing.

Most of the terms used in this User's Manual are standard terms that are used by other publications. To be sure of their meaning please check the **Glossary / Definitions / Abbreviations** Section at the end of this manual.

Computer Requirements:

A minimum screen resolution of 800 by 600 is required. We Recommended a higher resolution to optimize displays for the Graphics Functions. The **"Use Large Screen Resolution**" and **"Use Full Screen Resolution**" functions will adjust the program's display up to a maximum resolution of 4500 by 3000.

Compatible with these versions of Microsoft Windows operating systems: 95, 98, 98SE, ME, NT, 2000, XP, VISTA, Windows 7, Windows 8 / 8.1 and Windows 10 in both 32 and 64 bit versions.

The Software has also been installed and tested on a Microsoft Surface running Windows 10 Pro.

An Intel Pentium or 100% Compatible processor, a faster processor will improve the speed of the following:

- Piston Acceleration and Velocity, or Piston Travel Charts.
- Acceleration and Top Speed Prediction Chart.
- Graphics Functions

You will also need 6 MB of free hard disk space for the program plus supplied files and another 3 MB for the documentation. Addition space will also be needed for parameter and data files that you create.

A printer is optional - It is only needed if you want to make a hard copy of any of the forms, graphs, or other files the program creates.

While I personally have no experience with running CARFOR with other operating systems I do have users that are doing just that.

> Just letting you know that I've received it and that it runs fine under Linux using the Wine windows emulator.

> > Cheers,

> I'm using a Mac but I run CARFORW through parallels desktop (virtual machine) on windows 7 32-bit.

Getting Started

<u>lnstallation:</u>

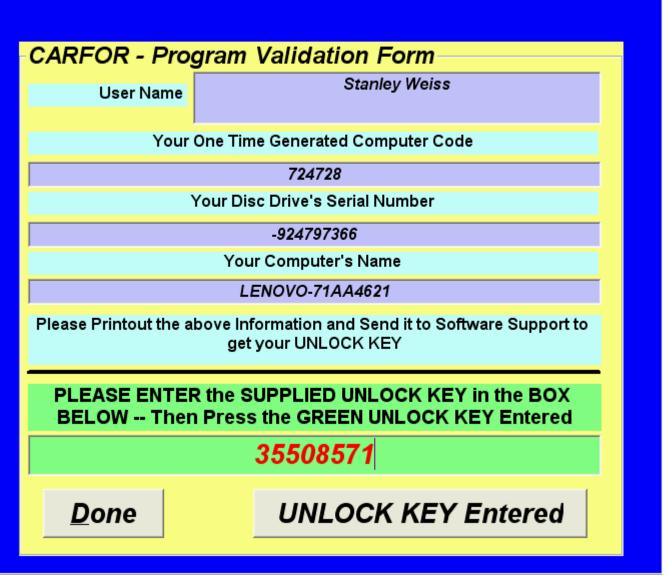
Installation is quick and easy on any computer.

Download and Run the Install Program.

That's it ... No user configuration of CARFORW is required. You are now ready to start using the program, and input your data. Note there is no need to re-boot your machine before starting to use the software.

Uninstalling The Software.

To uninstall the software just Go To Control Panel Add Remove Programs and uninstall / remove it.


Reporting Problems / Getting Help.

Please let me know if you experience any problems at all. I need to know how you try to run the program. Short Cut, Windows Explorer, Start | Run, or a DOS command line. I also need to know what error message you got and if possible a hardcopy of the error screen. What version of the operating system and service packs you are using. If the program is up and running when you have a problem than please write / save the information you have entered and calculated to a parameter file. Be sure to include an in-depth explanation of what the problem is and what you were doing when you got it and saved the file you are sending. Go into the folder where the file is and attached that file to the e-mail reporting your problem. Please include as much information as possible about the problem.

Technical Support Policy: Free e-mail support to all registered users.

Software Update Policy: Updates are free, by e-mail to all registered users. At times I will send out a notice that a new version has been released a long with what changes have been made. You will only be able to receive this if you send me your new email address when your email address changes.

Starting with Version 4.0.0, CARFOR requires an UNLOCK key to run. When you load CARFOR you will get a screen that displays 4 pieces of information that have a GRAY background. You need to send me this information or a Print Screen. Then click the "DONE" button I will then send you your UNLOCK key which is shown in RED. Now load CARFOR and Enter your UNLOCK key then click the "UNLOCK KEY Entered" button. NOTE: The UNLOCK key is all numeric so there are no letter "O" in it. Once you have UNLOCKED the program you not see this screen again.

Once you have UNLOCKED CARFOR you will see the Splash Screen. You click on that and you will then see the normal opening screen.

How does it work?

First you must load the program. This can be done many ways. You can use a short cut, windows explorer, the run option of Start, or a DOS command line. The easiest way to use the program is to create a short cut and drag it on to your Desktop; you can then click on the CARFOW icon on your Desktop to start the program.

Now lets calculate your Engine Size. You will select CI from the main menu. Shown inside the black square.

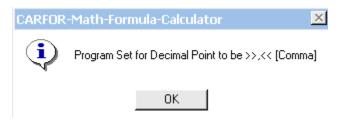
CARFOR-Math	n-Formula-Ca	lculator		
<u>File</u> <u>CI</u> C <u>R</u>	ET/MPH/HP	Carn <u>I</u> nfo	C <u>o</u> mp Gauge	e <u>B</u> lowers
Air Fuel 2-S B	E <u>x</u> haust <u>G</u> ea	r <u>A</u> ccelera	ition Cha <u>s</u> sis	Springs
<u>W</u> eather G <u>r</u> a	apher 2-S Po	rt <u>T</u> iming	<u>U</u> nit Conversio	on
Eguivalence Ch	harts <u>A</u> bout	<u>N</u> itrous	Tools Gener	ate Cam File

The form will load and displays the current values. If you have just loaded the program these will be the default values. If you have read / open a parameter file these will be the values from that project.

- First you must enter the Bore (4.0), Stroke (3.25), and Number of Cylinders of your engine (8). Shown by the green squares.
- Now lets calculate your Engine Size in cubic inches. You will select Engine Size. Shown by the black square.
- You engine size will be shown in the pink square in cubic inches (326.7256).

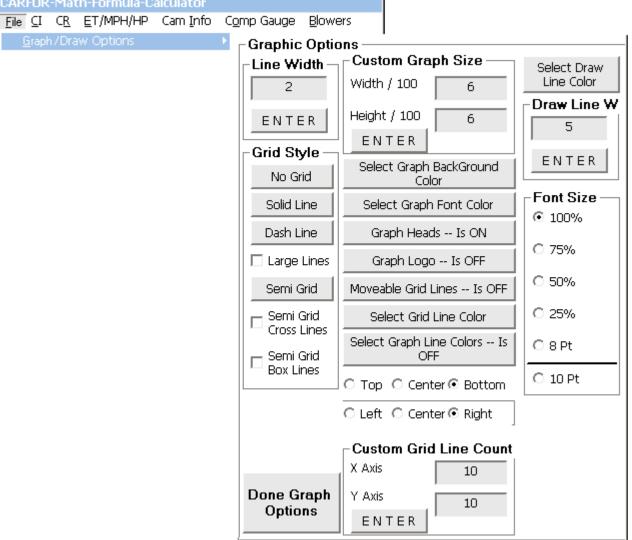
6 - CARFOR Performance Software by Stan Weiss / World Wide Enterprises

E	ngine Displa	acement Cal	culator						
	-Engine Det Bore		Stroke	0.05	D	0.060	Piston to Deck		<u>E</u> ngine Size
	Number Of	4.0		3.25	Bore Increase	0.060	Clearance	0.0	<u>B</u> ore
	Cylinders	8	Engine Size	326.7256	HorsePower	555.0	HP Increase	0.0	

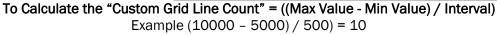

Using Metric Input and Output.

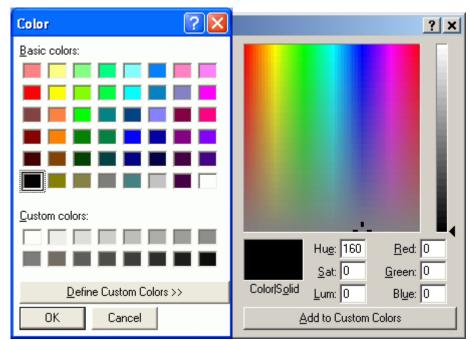
There are two ways to use Metric Input and Output. The first way is when you load a form you check the Metric Box. The second way is on the Main Menu turning ON Metric Mode. Now when you load any form that has a Metric Box the program will automatically check the Metric Box for you when it loads the form.

- First you must enter the Bore (101.6), Stroke (82.55), and Number of Cylinders of your engine (8). Shown by the green squares.
- Now lets you calculate your Engine Size in cubic centimeters cc's. You will select Engine Size. Shown by the black square.
- You engine size will be shown in the orange square in cubic centimeters (cc's) (5354.073).


The **Metric Mode** can be toddled ON and OFF while the program is running. If a change is made to the Metric Mode setting, this will also be (written) saved to the parameter file. The Metric Mode will be reloaded when that parameter file is Read (Opened).

Based on Regional Settings in the Control Panel, the program will display numbers with support for International settings, this will show the "," for a decimal point as required.




In the above example your input data entered would be Bore (101,6), Stroke (82,55), and Number of Cylinders of your engine (8).

The **Print Company Info Multi Page** can be toddled ON and OFF while the program is running. When a text report has a "," comma pressed it will cause the text report to be printed. The default is to print the USERS Company Information on the first page only. If **Print Company Info Multi Page** is on then the Company Information will be printed at the top of each printed page.

The user can customize the Graph Function.

There are many places where the user can customize the colors used.

8 - CARFOR Performance Software by Stan Weiss / World Wide Enterprises

You can customize the help Box. By changing the Font Style and / or size, the Font Color, and the Background Color of the help box.

CARFOR	-Mat	h-Formula-Ca	alculator		
<u>F</u> ile <u>⊂</u> I	C <u>R</u>	<u>E</u> T/MPH/HP	Carn <u>I</u> nfo	Cg	omp Gauge <u>B</u> lowers
Graph	n / Dra	w Options			Cha <u>s</u> sis S <u>p</u> rings
Help I	Box O	otions		×	Select Font <u>S</u> tyle
					Select <u>F</u> ont Color
					Select Background <u>C</u> olor

Standard Help Box

Acceleration and Top Speed Prediction Chart with 60 foot, 330 foot, 1/8 Mile, and 1/4 Mile ET using RPM and Torque from Parameter File also Coefficient of Drag, Frontal Area, Tire Rolling Resistance, Tire Diameter, Tire Rolling Radius, Launch RPM, % Rear End Power Loss, % Power Loss, Vehicle Weight with Driver, Dyno Correction Factor, Shift RPMs, Tire Growth Percentages, Trans Gear Ratios, Shift Time.

User customized Help Box

Acceleration and Top Speed Prediction Chart with 60 foot, 330 foot, 1/8 Mile, and 1/4 Mile ET using RPM and Torque from Parameter File also Coefficient of Drag, Frontal Area, Tire Rolling Resistance, Tire Diameter, Tire Rolling Radius, Launch RPM, % Rear End Power Loss, % Power Loss, Vehicle Weight with Driver, Dyno Correction Factor, Shift RPMs, Tire Growth Percentages, Trans Gear Ratios, Shift Time.

The USER can customize many elements of the GUI (Graphical User Interface).

User Selectable Entry GUI Options	Classic Label Font and Size
	Classic CommandButton Font and Size
	Select Font for Entry Text
	Select Alignment for Entry Text
	Select Entry Text Box Border Style
	Select Option/Check Box Border Style - DO FIRST
	Select Font for Label Text
	Select Color for Label Text
	Select Font for Command Button Text
	Select Background Color of Entry Frame
	Select Background Color of Quit / Done Buttons

1-> This shows changing the Font Style, size, 2->Alignment, and Border Style for entry text. 3-> This shows changing the Font Style, size, and color for labels. 4-> This shows changing the Font Style, and size Command Buttons. 5-> This shows changing the Option / Check Box Border Style. 6-> This shows a user selected color for the Quit / done / OK buttons, This shows a user selected color for the background of the entry frames, plus Use Large Screen Resolution.

The User can select from the available Fonts on your system. You can also select Font Style and Size.

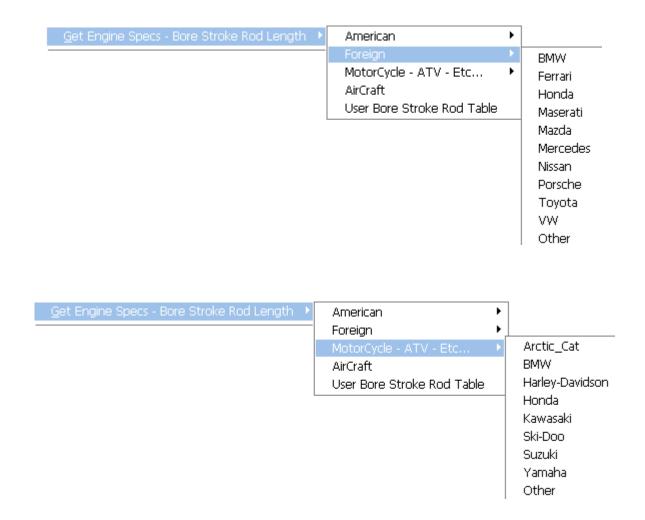
Font			?×
Eont: O Arial O Arial Black O Comic Sans MS Courier O Courier New O Estrangelo Edessa Fixedsys	Font style: Regular Regular Italic Bold Bold Italic	Size: 8 9 10 11 12 14 16 ❤	OK Cancel
	Sample		

You can select from the built in **Trans Gear Ratios** by selecting the type of trans and then on the popup screen select your trans. Or Enter your own gears ratios on either the gear or acceleration / top speed screen.

Get Transmission Gear Ratios	A <u>u</u> tomatic
Use Large Screen Resolution	<u>Q</u> uaife
	<u>S</u> tick 3/4 Speed S <u>t</u> ick 5/6/7 Speed
	<u>T</u> remec
	Motorcycle

Trans Ratio Finder	
	•
Standard 3.27 1.98 1.34 1.00 0.64	<u>.</u>
Standard II 3.27 1.98 1.34 1.00 0.83	=
TKO 3.27 1.98 1.34 1.00 0.64	
TKO II 3.27 1.98 1.34 1.00 0.83	
TKO-500 SOD 3.27 1.98 1.34 1.00 0.68	
TKO-600 SOD 2.87 1.89 1.28 1.00 0.64	
TKO-600 RROD 2.87 1.89 1.28 1.00 0.82	
500 2.87 1.89 1.28 1.00 0.64	▼

File CI CR ET/MPH/HP Comp Gauge Blowers Graph / Draw Options prings User Selectable Entry GUI Options cam File Print Forms CI Print Forms CR Print Company Info Multi Page Is OFF CR Read (Open) Parameter File Cam Info Compression Gauge Blowers Air Fuel Cam Info Get Transmission Gear Ratios Caer Get Coefficient of Drag / Frontal Area Gear Get Engine Specs - Bore Stroke Rod Length Chassis Use Large Screen Resolution Springs Use Large Screen Resolution Springs Weather 2 Stroke Port Timing Unit Conversion Equivalence Charts Metric Mode Is OFF Cam Site Company Name, Address, etc Load Company Name, Address, etc, Data Generate Cam File Exit About - Serial Number	CARFOR-Math-Formula-Calculator	×
Printer SetupCRPrint Company Info Multi Page Is OFFET / MPH / HPRead (Open) Parameter FileCam InfoWrite (Save) Parameter FileBlowersEdit Parameter File NotesAir FuelGet Transmission Gear Ratios2 Stroke ExhaustGet Coefficient of Drag / Frontal AreaGearGet Engine Specs - Bore Stroke Rod LengthAccelerationUse Large Screen ResolutionSpringsUse Full Screen ResolutionSpringsShow Screen ResolutionVeatherClear All Data Fields on All FormsUnit ConversionMetric Mode Is OFFEnter Your Company Name, Address, etc Load Company Name, Address, etc, DataNitrous Generate Cam File	Graph / Draw Options Help Box Options	prings
Read (Open) Parameter FileCompression GaugeWrite (Save) Parameter FileCompression GaugeEdit Parameter File NotesBlowersGet Transmission Gear Ratios2 Stroke ExhaustGet Coefficient of Drag / Frontal AreaGearGet Engine Specs - Bore Stroke Rod LengthAccelerationUse Large Screen ResolutionChassisUse Full Screen ResolutionSpringsShow Screen ResolutionWeatherClear All Data Fields on All FormsUnit ConversionMetric Mode Is OFFEnter Your Company Name, Address, etcLoad Company Name, Address, etc, DataGenerate Cam File	Printer Setup	CR
Get Transmission Gear Ratios2 Stroke ExhaustGet Coefficient of Drag / Frontal AreaGearGet Engine Specs - Bore Stroke Rod LengthAccelerationUse Large Screen ResolutionChassisUse Full Screen ResolutionSpringsShow Screen ResolutionWeatherClear All Data Fields on All FormsUnit ConversionMetric Mode Is OFFEnter Your Company Name, Address, etcLoad Company Name, Address, etc, DataNitrousGenerate Cam FileSprings	Write (Save) Parameter File	Compression Gauge Blowers
Use Full Screen Resolution Show Screen Resolution Clear All Data Fields on All Forms Metric Mode Is OFF Enter Your Company Name, Address, etc Load Company Name, Address, etc, Data Show Screen Resolution Springs Weather 2 Stroke Port Timing Unit Conversion Equivalence Charts Nitrous Generate Cam File	Get Coefficient of Drag / Frontal Area	2 Stroke Exhaust Gear
Clear All Data Fields on All Forms Unit Conversion Metric Mode Is OFF Equivalence Charts Enter Your Company Name, Address, etc Nitrous Load Company Name, Address, etc, Data Generate Cam File	Use Full Screen Resolution	Springs Weather
Load Company Name, Address, etc, Data Generate Cam File	Metric Mode Is OFF	Unit Conversion
Graph	Load Company Name, Address, etc, Data	Generate Cam File About - Serial Number


Each form with all the information on it can be printed.

Use Printer Setup to select which Printer will be used and to adjust how your printout will

a Print	? 🔀
General	
Select Printer	
Add Printer Microsoft XPS Document Writer	
Status: Ready	Print to <u>file</u>
Location: Comment:	Fin <u>d</u> Printer
Page Range	
O AJI	Number of <u>c</u> opies: 1 📑
Selection Ourrent Page	
C Pages	
	Print Cancel

You can select from the built in **Engine Specs** by selecting the type of vehicle and then type of manufacturer and then on the popup screen select your engine size. Or Enter your own specifications on the CI screen.

Get Engine Specs - Bore Stroke Rod Length 🔸	American 🕨 🕨	AMC - Jeep - Ramble		
	Foreign 🕨 🕨	Buick		
	MotorCycle 🕨	Cadillac		
	AirCraft	Chevy	Þ	Chevy - SB
	User Bore Stro	Chrysler - Dodge - DeSoto - Plymouth	١	Chevy - BB
-		Cummins		Chevy - All O
		Ford - Edsel - Lincoln - Mercury	۲ı	
		Olds		
		Packard		
		Pontiac		
		Studebaker		

Sample of User Supplied - Bore Stroke Rod Length Number of Cylinders Files.

Note: This file must be named USER_BSR.prm and be present in the same folder as the CARFORW executable.

All data field start with a space

Column one has a Description, which must end with a Vertical Rule "|"

Column Two has the Bore

Column Three has the Stroke

Column Four has the Rod Length

Column Five has the Number of Cylinders

Note: Any line that does not have a Vertical Rule (|) is treated as a comment. All fields must have data. If you do not know lets say the rod length then you would place a 0 (zero) in that column

SRW-SB | 6.125 6.3 0 7 SRW-BB | 16.125 16.3 31.5 14

Open					? 🗙
Look jn:	📄 doswork		•	+ 🗈 📸 📰 -	
My Recent Documents Desktop	Cme Util MUSTOO.PRM MUSTOOME.PRM				
My Documents					
My Computer					
My Network Places	File <u>n</u> ame: Files of <u>type</u> :	Parameter Files (*.prm)		• • • • • • • • • • • • • • • • • • •	<u>O</u> pen Cancel

The default values for each cell are coded into the program. The program will create (Save) a file for you, when you tell it to "Write (Save) Parameter File". The file CARFOR.PRM has the default values and is supplied as a sample file. This means the default values that the program uses once changed can be stored and recalled at a later time. This option lets you call the file whatever name you want, so you can create more than one. When you load the program you can than "Read (Open) Parameter File" for the car you want to work on. The user can at any point while running the program Read (Open) or Write (Save) whatever parameter file they want. The presently open parameter file will be shown on the man screen.

Parameter File – C:\Program Files\Microsoft Visual Studio\VB98\CARFOR\CARFOR.prm

DO NOT try to edit this file. A ';' as the first character of a line means that, that line is a comment and will be ignored when read by the program. Comment lines may be placed any where in the file. The user may add Acceleration or Road/ROad HP information at the end of the file for use by the program. These files are in ASCII and you can use NotePad to look at them or add Acceleration information.

All parameters will be written using U.S. units except the two-stroke exhaust screen which only works in Metric units.

NOTE in the DEMO version when reading (Opening) parameters for screens where the user cannot change values, these values / parameters will be ignored.

If changes are made to the graph function, help box setting, or Background color of entry forms these will also be saved and then reloaded when that parameter file is Read (Opened).

NOTE Logic has been added to check if a file named zxqvwu00.prm is present in the same folder as the CARFORW executable. If this file is present the program will automatically load in these values at startup.

Edit Parameter File Notes Lets the User Add / Update Notes that are save in the CARFOR.PRM file.

The **Use Large Screen Resolution** Mode can only be toddled ON while the program is running. If a change is made to the use Large Screen Resolution, this will also be (written) saved to the parameter file. The Use Large Screen Resolution Mode will be reloaded when that parameter file is Read in (Opened) or if a "CARFOR.LRG" file is present in the same folder as the program, the program will when loading automatically set itself into Large Screen mode. What is Large Screen Resolution Mode? Since the program is developed for 800 by 600 screen resolution when run on monitors that are set to a much higher resolutions the forms will be small and only fill a small area on the screen and maybe hard to read. This function will examine the users system and makes better use the available screen area by enlarging the forms as well as the fonts.

The **Use Full Screen Resolution** Mode can only be toddled ON while the program is running. If a change is made to the use Full Screen Resolution, this will also be (written) saved to the parameter file. The Use Full Screen Resolution Mode will be reloaded when that parameter file is Read in (Opened) or if a "CARFOR.FUL" file is present in the same folder as the program, the program will when loading automatically set itself into Full Screen Mode. How does Full Screen Mode differ from Large Screen Resolution Mode? Since the program is developed for 800 by 600 screen resolution when run on monitors that are set to a much higher resolutions the forms will be small and only fill a small area on the screen and maybe hard to read. This function will examine the users system and makes better use the available screen area by enlarging the forms as well as the fonts to fill the screen where the Large Screen Resolution Mode enlarges all forms by the same percentage increase.

Show Screen Resolution is just a quick way for you to see what resolution the monitor is set to and what dpi the fonts are set to. If you have a problem I may ask for this information.

User Logo On Graphs - Lets the User load his own Logo for display on all of the Graphs that the program produces. The user can than drag the Logo to any position on each Graph where they want it to appear. The Logo must be in "BMP" format and will not be scaled or resized.

Clear All Data Fields on All Forms – Lets the User Clear the data fields on All forms so that a Blank form can be printed.

Engine Details Bore	s 4.0	Stroke	3.25	Bore Increase	0.060	Piston to Deck	0.0	Engine Size
Number Of		Engine Size				Clearance		Bore
Cylinders	8	Rod Length	326.7256	HorsePower Port i	555.0	HP Increase Volumetric	0.0	Stroke
Engine RPM	6500	Rod Stroke	5.7	Diameter	2.25	Efficiency	0.85	C Para Chalus
Bore Stroke	1.23077	Ratio	1.75385	L/r Ratio	3.5077	Stroke Bore Ratio	0.8125	<u>C</u> Bore Stroke
Block Deck	9.245	Piston Comp Height	1.904	Crank Angle	0.0			Rod Length
Height Piston Area	12.56637	Crank Rod 90 Degree	74.0878	Average Piston Speed	3520.833			Max RP <u>M</u>
							~ ~ ~ ~ ~	Deck Height
Graph		MOPTOR						Piston Comp
ΎΕ.	C CPTF	On Oc			O MPS		U JBS	
								HP Increase
Journal Diameter	2.5	Bearing Speed	0.0	Piston Travel	1.399	Crank Degrees	74.123	HP <u>Increase</u> Piston <u>D</u> eck
Diameter	2.5		0.0 Id Degrees	Piston Travel	1.399 X Degre	ATDC	74.123	Piston <u>D</u> eck
Diameter Start Degrees					1	ATDC ees 5	i.0	Piston <u>D</u> eck Bore Stroke Rati
Diameter Start Degrees Rod Length 2	0	En	d Degrees	360.0	X Degr	ATDC ees 5	i.0	Piston <u>D</u> eck Bore Stroke Rati
Diameter Start Degrees Rod Length 2	0 6.2 600.25	En Piston Travel 2 Rod Weight	d Degrees	360.0 Pist T - Pist T2 Wrist Pin	X Degr 0.018 0.0000000	ATDC ees 5 Rod Small End Weight	74.123	Piston <u>D</u> eck B <u>o</u> re Stroke Rati Ro <u>d</u> Stroke Rati <u>Q</u> uit
Diameter Start Degrees Rod Length 2 Piston Weight	0 6.2 600.25 Pist	En Piston Travel 2 Rod Weight on T <u>r</u> v Cr	1.381	360.0 Pist T - Pist T2 Wrist Pin Offset	X Degr 0.018 0.00000000 ce <u>P</u> isto	ATDC ees 5 Rod Small End Weight	233.5	Piston <u>D</u> eck B <u>o</u> re Stroke Rati Ro <u>d</u> Stroke Rati
Diameter Start Degrees Rod Length 2 Piston Weight Piston <u>V</u> el	0 6.2 600.25 Pist	En Piston Travel 2 Rod Weight on T <u>r</u> v Cr Degrees Be	1.381 700.5 rankpin Load	360.0 Pist T - Pist T2 Wrist Pin Offset	X Degro 0.018 0.00000000 ce <u>Pisto</u> e Bor	ATDC ees 5 Rod Small End Weight on Vel/Trv 6 re Stroke M	233.5 Use Rod Small End Weight	Piston <u>D</u> eck B <u>o</u> re Stroke Rati Ro <u>d</u> Stroke Rati Quit

All data files that are written by the program are in ASCII and you can use NotePad, WordPad or any text editor to look at them. These would be both .PRM and .PRT files. Most of the Large BLUE text output fields have an option which lets you press the "." (Period) key and the program will write that information to a Disk file (.PRT). You can also press the "," (Comma) and print the Information to your printer. If when you press a key, you hear a bell sound from your computer and nothing happens take your mouse and click anywhere on that page and then hit your key again.

	Engine Disp	olacem	ent	Calcula	ator			······	THE R											
i.	Press	the	•	key	to	Write	this	Data	to	a	Disk	File	0r	,	key	to	Print	this	3 Dat	ta

Note: – There maybe times that a report generates more data than can be displayed on the screen. The program does generated all of the data and if you save the data to a "PRT" file and open that "PRT" file with Windows Notepad you will be able to see all of that data.

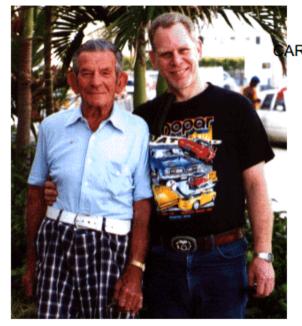
Enter Your Company Name, Address, etc – Lets you Enter your Company Information for the Text Reports you want Printed. Also let you save this Information to a Disk File.

Load Company Name, Address, etc, Data – Lets you Load from a Disk File your previously enter Company Information.

Quit / Exit the program by clicking on File and then Exit.

Stan Weiss' Performance Software

Philadelphia, PA 19111 CARFOR Manual: http://www.magneticlynx.com/carfor/carfor.pdf email: Stan Weiss <srweiss1@comcast.net> WebSite: http://www.magneticlynx.com/carfor/carfor.htm



Saturday March 13 2021

Bore = 4.0 Stroke = 3.25 Rod Length = 5.7 RPM = 6500 Wrist Pin Offset = 0.0 Piston Speed is 58.68056 Feet per Second 17.88583 Meters per Second Piston Speed is 3520.83333 Feet per Minute 1073.15000 Meters per Minute Maximum Piston Velocity 5752.115743 FPM @ 75.16255703666 Degrees Piston Travel from TDC 1.42959 Inches 36.31163 mm Bore Rod Angle 15.99669 Cylinder Volume 17.96478 CI 294.38997 cc Crankshaft Degrees at which Rod and Crank are 90 Degrees 74.0878 Piston Travel from TDC 1.39789 Inches 35.50642 mm Bore Rod Angle 15.91220 Cylinder Volume 17.56641 CI 287.86192 cc

Crank Angle	Piston Velocity	Piston Acceleration	Piston Flow @ 28	Velocity
Degree-ATDC	FT/Sec	FT/Sec/Sec	CFM	FT/Min
.000	.000	80628.549	.00	.000
5.000	10.316	80134.465	27.01	618.952
10.000	20.505	78659.956	53.68	1230.323
15.000	30.444	76228.239	79.70	1826.650
20.000	40.012	72877.963	104.75	2400.708
25.000	49.094	68663.102	128.53	2945.631
30.000	57.584	63652.690	150.75	3455.023

Stan Weiss' Performance Software

Philadelphia, PA 19111 RFOR Manual: http://www.magneticlynx.com/carfor/carfor.pdf email: Stan Weiss <srweiss1@comcast.net> WebSite: http://www.magneticlynx.com/carfor/carfor.htm

Saturday March 13 2021

Rod Length = 5.7RPM = 6500Bore = 4.0Stroke = 3.25Wrist Pin Offset = 0.0 Piston Speed is 58.68056 Feet per Second 17.88583 Meters per Second Piston Speed is 58.68056 Feet per Minute 1073 15000 Meters per Minute Piston Speed is 3520.83333 Feet per Minute 1073.15000 Meters per Minute Maximum Piston Velocity 5752.115743 FPM @ 75.16255703666 Degrees Piston Travel from TDC 1.42959 Inches 36.31163 mm Bore Rod Angle 15.99669 Cylinder Volume 17.96478 CI 294.38997 cc Crankshaft Degrees at which Rod and Crank are 90 Degrees 74.0878 Piston Travel from TDC 1.39789 Inches 35.50642 mm Bore Rod Angle 15.91220 Cylinder Volume 17.56641 CI 287.86192 cc

	Piston		Piston			
Crank Angle	Velocity	Acceleration	Flow @ 28"	Velocity		
Degree-ATDC	FT/Sec	FT/Sec/Sec	CFM	FT/Min		
.000	.000	80628.549	.00	.000		

Engine Details								Engine Size
Bore	4.0	Stroke	3.25	Bore Increase	0.060	Piston to Deck Clearance	0.0	
Number Of Cylinders	8	Engine Size	326.7256	HorsePower	555.0	HP Increase	0.0	Bore
Engine RPM	6500	Rod Length	5.7	Port	2.25	Volumetric Efficiency	0.85	Stroke
Bore Stroke	.23077	Rod Stroke Ratio	1.75385	Diameter L/r Ratio	3.5077	Stroke Bore	0.8125	C Bore Stroke
Ratio	9.245	Piston Comp Height	1.904	Crank Angle	0.	Ratio		Rod <u>L</u> ength
Height		Crank Rod		Average			10 50 105	Max RPM
	2.56637	90 Degree	74.0878	Piston Speed	3520.833	Compress	13.59405	Deck Height
	O Acc 🛈			DW-PT O DW-	Vel C DW-	Acc 🔿 DW- CFM (O SE O DE I	
araph		11						Piston Comp
braph	C CPTF	11						Piston Comp
Journal		11					-RPM C JBS	Piston Comp HP Increase Piston Deck
Journal Diameter	C CPTF	CIT CRA	C cvc C	CVC- CVC- (TV PD	O PV O PD	C MPS C MPV Crank Degrees ATDC	-RPM С ЈВS	HP Increase
Journal Diameter Start Degrees	C CPTF	CIT CRA	0.0 CVC 0	CVC- C CVC- C TV PD PD PD Piston Travel	O PV O PD	O MPS O MPV Crank Degrees ATDC ees 5	-RPM C JBS 74.123	HP Increase Piston Deck Bore Stroke Ra
Journal Diameter Start Degrees Rod Length 2	C CPTF 2.5 0	О IT O CRA Bearing Speed En	0.0 CVC C	CVC- C CVC- C TV PD PD C Piston Travel 360.0	PV C PD	O MPS O MPV Crank Degrees ATDC ees 5 Rod Small End	-RPM C JBS 74.123	HP Increase Piston Deck Bore Stroke Ra Rod Stroke Ra
Journal Diameter Start Degrees Rod Length 2	C CPTF 2.5 0 6.2 500.25	© IT © CRA Bearing Speed En Piston Travel 2 Rod Weight	0.0 0.0 d Degrees 1.381	CVC- C CVC- C TV PD PD C Piston Travel 360.0 Pist T - Pist T2 Wrist Pin	PV C PD 1.399 X Degr 0.018 0.0000000	C MPS C MPV Crank Degrees ATDC ees Rod Small End Weight O Vel/Trv	-RPM © JBS 74.123 .0 233.5 Use Rod Small	HP Increase Piston Deck Bore Stroke Ra Rod Stroke Ra
Journal Diameter Start Degrees Rod Length 2 Piston Weight	C CPTF 2.5 0 6.2 500.25 Pist	Bearing Speed En Piston Travel 2 Rod Weight	0.0 0.0 d Degrees 1.381 700.5	CVC- CVC- PD Piston Travel 360.0 Pist T - Pist T2 Wrist Pin Offset	PV C PD 1.399 X Degr 0.018 0.0000000 rce <u>Pistr</u>	Crank Degrees ATDC ees 5 Rod Small End Weight on Vel/Trv	-RPM O JBS 74.123 .0 233.5	HP Increase Piston Deck Bore Stroke Ra Rod Stroke Ra
Journal Diameter Start Degrees Rod Length 2 Piston Weight	C CPTF 2.5 0 6.2 500.25 Pisti Crank	© IT O CRA Bearing Speed En Piston Travel 2 Rod Weight on T <u>r</u> v Cr Degrees Be	0.0 0.0 d Degrees 1.381 700.5 ankpin Load	CVC- CVC- PD Piston Travel 360.0 Pist T - Pist T2 Wrist Pin Offset Crankpin Fo	PV C PD 1.399 X Degr 0.018 0.0000000 rce <u>Pistr</u> Bor	O MPS O MPV Crank Degrees ATDC ees 5 Rod Small End Weight on Vel/Trv re Stroke M	-RPM O JBS 74, 123 .0 233,5 Use Rod Small End Weight	HP Increase Piston Deck Bore Stroke Ra Rod Stroke Ra

CI – Engine Displacement

Calculate Engine Displacement from Bore and Stroke. Calculate Bore and / or Stroke for required displacement. See how changes to bore and / or stroke changes Displacement, Bore Stroke Ratio, Rod Stroke ratio, Piston Speed, Piston Velocity, Piston Acceleration, Crank Rod Angle and Bore Rod Angle. Calculate any of these Block Deck Height, Piston Compression Height, and Piston to Deck Clearance.

- 1) Calculate Engine Displacement / Size in Cubic Inches from Bore, Stroke and number of cylinders.
- 2) Calculate Bore needed from Cubic Inches, Stroke and number of cylinders.
- 3) Calculate Stroke needed from Cubic Inches, Bore and number of cylinders.
- 4) Calculate Bore and Stroke needed from cubic inches, Bore Stroke Ratio, and number of cylinders.
- 5) Calculate Bore and Stroke needed from cubic inches, Stroke Bore Ratio, and number of cylinders.
- 6) Calculate Rod Length needed from Stroke, and Rod Stroke ratio.
- 7) Calculate Max RPM from Stroke, and average piston speed.
- 8) Calculate Block Deck Height from Stroke, Rod Length, Piston Comp Height, and Piston to Deck Clearance.
- 9) Calculate Piston Comp Height from Stroke, Rod Length, Block Deck Height, and Piston to Deck Clearance.
- 10)Estimate the Horsepower gain from increasing the Bore and keeping the Cubic Inches and Rod stroke Ratio the same.
- 11)Calculate Piston to Deck Clearance from Stroke, Rod Length, Block Deck Height, and Piston Comp Height.

- 12)Calculate Piston Speed, Piston Acceleration and Velocity, showing result ever X Crankshaft degrees. Also will show at what Crankshaft degrees the Rod and Crank are at 90 degrees to each other. Using Bore, Stroke, RPM, Wrist Pin Offset, and Rod Length. This also shows piston flow @ 28 inches of water to give you an idea of what cylinder head flow should be at various RPMs. Head flow because of the inertia of air mass, these numbers will shift towards BDC as RPMs rise.
- 13)Calculate Piston Travel, Crank Rod Angle, Rod Bore Angle, and Cylinder Volume in both CI and cc, showing results every "X" Crankshaft degrees. Also will show at what Crankshaft degrees the Rod and Crank are at 90 degrees to each other. Using Bore, Stroke, RPM, Wrist Pin Offset, and Rod Length.
- 14)Calculate Crankpin Load, showing result ever X Crankshaft Degrees. Using Bore, Stroke, RPM, Rod Length, Piston Weight, Wrist Pin Offset, and Rod Weight.
- 15) Calculate Crankpin Force, showing result ever X Crankshaft Degrees. Using Bore, Stroke, RPM, Rod Length, Piston Weight, Wrist Pin Offset, and Rod Weight.

Note: Piston and Rod weights must be entered in grams. Piston weight includes the weight of rings, wrist pin, and any pin locks or buttons. If the **Use Rod Small End Weight box is checked** the user will enter that amount, else the program will use 1/3 of the Rod weight for the small end weight.

- 16)Calculate Piston Travel / Distance Piston has moved down the bore, using Stroke, Rod Length, Wrist Pin Offset and Crank Degrees Rotation from TDC.
- 17)Calculate Crank Degrees Rotation from TDC, using Stroke, Rod Length, Wrist Pin Offset and Piston Travel / Distance Piston is down the bore.
- 18)Calculate Piston Travel, Piston Acceleration and Velocity, (Degree Wheel) showing result ever X Degrees. Using Bore, Stroke, Wrist Pin Offset, RPM, and Rod Length. This also shows piston flow @ 28 inches of water to give you an idea of what cylinder head flow should be. This will show the same valves as 12 & 13 as long as wrist pin offset is equal to zero. When there is a wrist pin offset this will use the piston ATDC for zero degrees whereas 12 & 13 use the rod journal position.
- 19) Calculate Bore Stroke Ratio and Stroke Bore Ratio from Bore, Stroke and Rod Length.
- 20)Calculate Rod Stroke Ratio from Stroke and Rod Length.
- 21)Calculate Bearing Speed from Journal Diameter and RPM.
- 22)Calculate Crank Angle at which Piston and Crank Speed are the same using Rod Length and Stroke.
- 23)Graph First will set up the X-Axis and Y-Axis ranges and Produce a graph based on the selected option.
- 24) Graph +1 will add another Graph line to the present Graph; this will produce good results if the same option is selected.

Graph Options:

Vel - Piston Velocity on Y-Axis, 0 to 360 Degrees on X-Axis.

Acc - Piston Acceleration on Y-Axis, 0 to 360 Degrees on X-Axis.

CFM - Piston Flow CFM @ 28 Inches of Water on Y-Axis, 0 to 180 Degrees on X-Axis.

PT - Piston Travel on Y-Axis, 0 to 360 Degrees on X-Axis.

RA - Rod Angle On Y-Axis, 0 to 180 Degrees on X-Axis.

CV - Cylinder Volume on Y-Axis, 0 to 360 Degrees on X-Axis

DW- PT - Using Piston TDC / DW Graph Piston Travel on Y-Axis, 0 to 360 Degrees on X-Axis.

DW – Vel – Using Piston TDC / DW Graph Piston Velocity on Y-Axis, 0 to 360 Degrees on X-Axis.

DW – **Acc** – using Piston TDC / DW Graph Piston Acceleration on Y-Axis, 0 to 360 Degrees on X-Axis.

DW – **CFM** - Using Piston TDC / DW Graph Piston Flow CFM @ 28 Inches of Water on Y-Axis, 0 to 180 Degrees on X-Axis.

SF - Side Force, Bore, Stroke, RPM, Rod Length, Piston Weight (this includes the weight of the rings, wrist pin, and any locks or buttons), Wrist Pin Offset, and Rod Weight.

RF – Reciprocating Forces, Bore, Stroke, RPM, Rod Length, Piston Weight (this includes the weight of the rings, wrist pin, and any locks or buttons), Wrist Pin Offset, and Rod Weight.

22 - CARFOR Performance Software by Stan Weiss / World Wide Enterprises

PIF – Piston Inertia Forces – Positive numbers are Tension and Negative numbers are Compression **CPTF -** Crank Pin Tangent Force

IT - Instantaneous Torque

CRA - Crank Rod Angle

CVC - Cylinder Volume Change in cc's. Using Bore, Stroke, Wrist Pin Offset, Rod Length.

CVC-TV – Percent Cylinder Volume Change. Using Bore, Stroke, Wrist Pin Offset, Rod Length and Compression Ratio.

CVC-PD – Pressure Differential from Cylinder Volume Change. Using Bore, Stroke, Wrist Pin Offset, Rod Length and Compression Ratio.

PV - Piston Demand - Port Velocity. Using Bore, Stroke, Wrist Pin Offset, Rod Length, RPM, Port Diameter and Volumetric Efficiency.

MPS - Mean Piston Speed, Stroke and RPM.

MPV-RPM - Max. Piston Speed, Stroke, RPM, Rod Length and Wrist Pin Offset.

JBS - Bearing Speed, Journal Diameter and RPM.

Note: Check each Calculation to see if it uses Wrist Pin Offset. All other calculations are based on NO piston pin offset (pin is centered in the piston). Pin offset toward the Major Thrust is entered as a positive value and pin offset toward the Minor Thrust is entered as a (-) negative value.

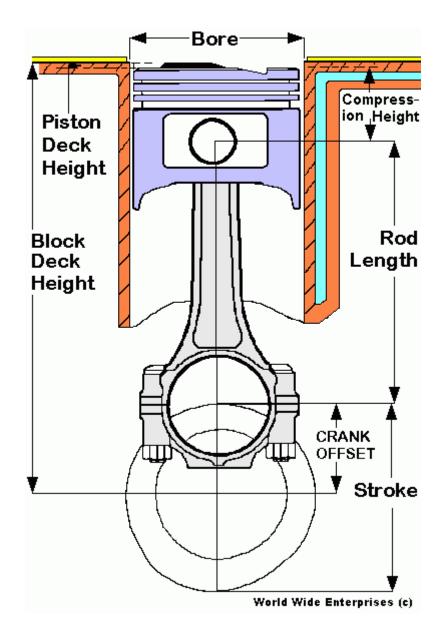
Note: Ever X Crankshaft Degrees can be what ever the user wants examples: 10.0, 1.0, 0.1, 0.00001 in most cases the program will not generate more than 720 lines. What this means is that the user must match his "Ever X" value with his start and end degrees.

Crank Angle - Is the rotational angle of the rod journal centerline from the bore centerline, with 0 and 360 being TDC and 180 being BDC.

Rod Angle - Is the angle formed by the bore centerline and the rod centerline.

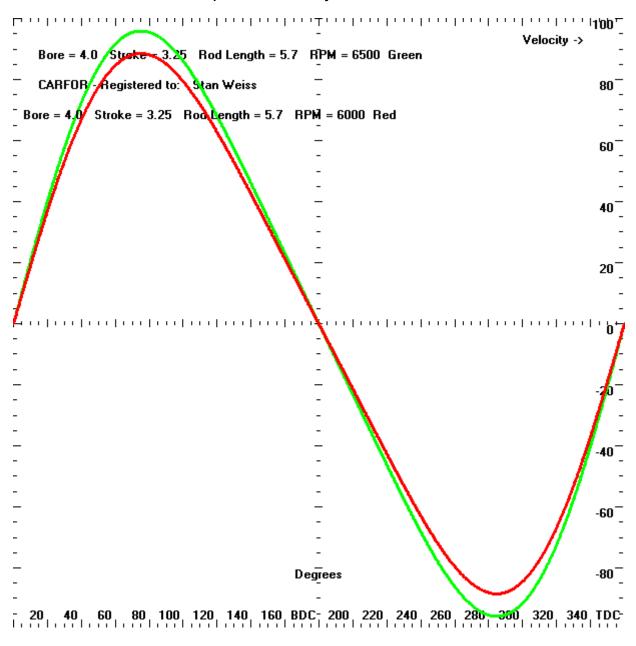
Crank Rod Angle - Is formed by the rod centerline and a line drawn from the rod journal center to the crankshaft centerline.

Piston Travel - Is the distance the piston has traveled from where it was at TDC.

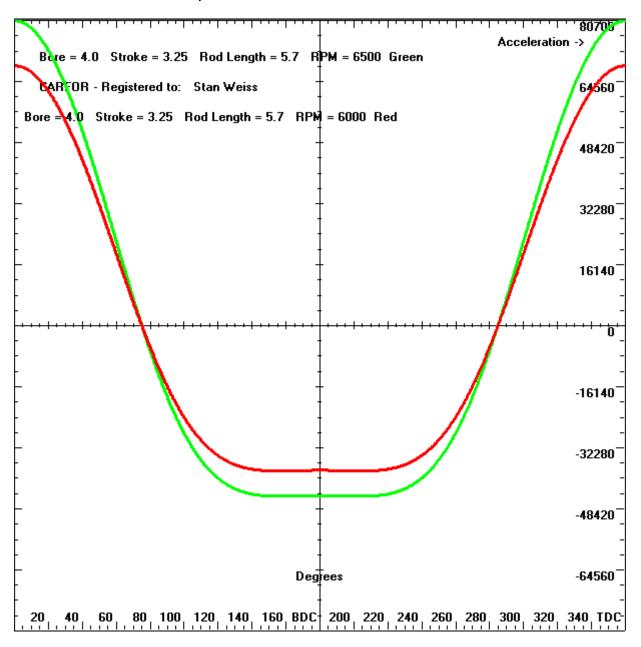

Cylinder Volume - Is the volume above the piston, calculated using the bore and the distance the piston traveled as the stroke.

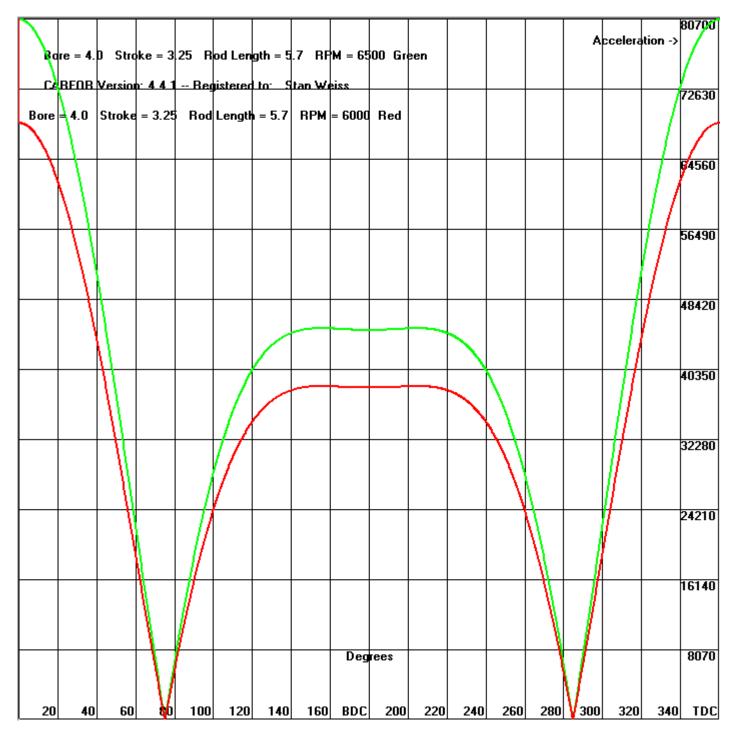
Remember piston speed is and average for your stroke and RPM. Your piston velocity and acceleration will change and at some point in the cycle each will be zero. Also as your rod stroke ratio changes your max. Velocity and acceleration will change, but your piston speed will not for the same stroke and RPM. Your piston velocity starts at 0 at TDC, it will be at its max. Around the point the crank and rod are at 90 degrees, which for a 3.25" stroke and 5.7" rod is around 74 degree ATDC.

Wrist Pin / Crankshaft Centerline Offset – The crank centerline is moved in the opposite direct as you would move the wrist pin to get the same results. In the 2 examples below we are at TDC is the wrist pin offset or is the crank centerline offset? In both of the examples below it can be either which is offset.

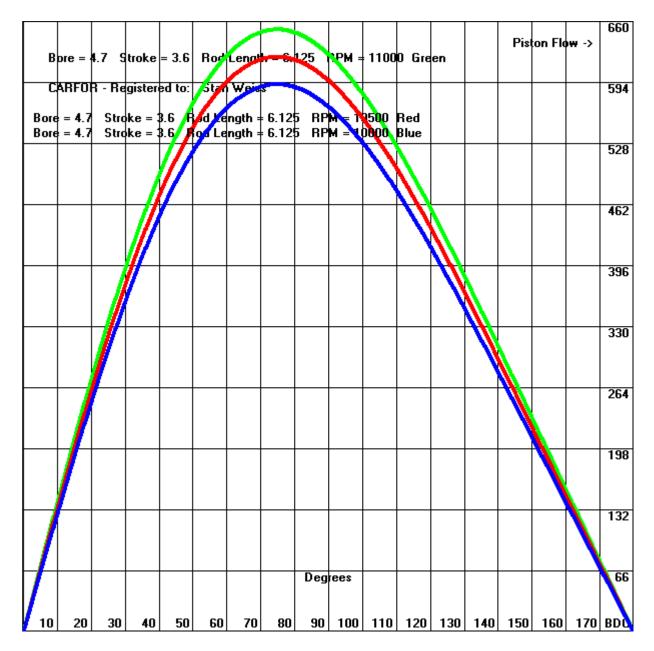

Ο

0





Graph Piston Velocity at various RPMs.



Graph Piston Acceleration at various RPMs.

Graph Piston Flow @ 28 inches of water to give you an idea of what cylinder head flow should be at various RPMs.

Calculate **Piston Speed, Piston Acceleration and Velocity,** showing result ever X Crankshaft degrees. Also will show at what Crankshaft degrees the Rod and Crank are at 90 degrees to each other. Using Bore, Stroke, RPM, Wrist Pin Offset, and Rod Length. This also shows **Piston Flow @ 28 inches of water** to give you an idea of what cylinder head flow should be at various RPMs.

Bore = 4.0 Stroke = 3.25 Rod Length = 5.7 RPM = 6500 Wrist Pin Offset = 0.0 Piston Speed is 58.68056 Feet per Second 17.88583 Meters per Second Piston Speed is 3520.83333 Feet per Minute 1073.15000 Meters per Minute Piston Speed is 40.00947 MPH 64.38900 KiloMeters per Hour Maximum Piston Velocity 5752.115743 FPM @ 75.162557036658 Degrees Crankshaft Degrees at which Rod and Crank are 90 Degrees 74.0878 Piston Travel from TDC 1.39789 Inches 35.50642 mm Bore Rod Angle 15.91220 Cylinder Volume 17.56641 CI 287.86192 cc

	Piston	Piston	Piston
Crank Angle	Velocity	Acceleration	Flow @ 28"
Degree-ATDC	FT/Sec	FT/Sec/Sec	CFM
0.0000000000	0.00000000000	80628.548553667500	.00
5.0000000000	10.315867690807	80134.464948046500	27.01
10.0000000000	20.505378138588	78659.956035034300	53.68
15.0000000000	30.444158841160	76228.238574501200	79.70
20.0000000000	40.011803888645	72877.963436680800	104.75
25.0000000000	49.093846489134	68663.101742119000	128.53
30.0000000000	57.583708739360	63652.690453272700	150.75
35.0000000000	65.384605040876	57930.346895610100	171.18
40.0000000000	72.411362768862	51593.444420471300	189.57
45.0000000000	78.592109373199	44751.833945225200	205.75
50.0000000000	83.869760587523	37526.003222769100	219.57
55.0000000000	88.203232025189	30044.592171952000	230.92
60.0000000000	91.568288870047	22441.231733542600	239.73
65.0000000000	93.957948572782	14850.745473223300	245.98
70.0000000000	95.382362074328	7404.842410519590	249.71
75.0000000000	95.868121688176	227.525119967166	250.98
80.00000000000	95.456978174327	-6569.477594172750	249.91
85.0000000000	94.203993176859	-12890.888497927400	246.63
90.0000000000	92.175201120951	-18661.296480595500	
95.0000000000	89.444900127604	-23827.482055444100	
100.0000000000	86.092727224416	-28359.430628537700	
105.0000000000	82.200692924054	-32249.952691521200	
110.0000000000	77.850350551301	-35512.986961509500	
115.0000000000	73.120256522391	-38180.804863331400	
120.0000000000	68.083842669319	-40300.437448150900	
125.0000000000	62.807776836762	-41929.693867952100	
130.0000000000	57.350840636633	-43133.131899319700	
135.0000000000	51.763310166517	-43978.285537451800	
140.00000000000	46.086791632962	-44532.369636819800	
145.00000000000	40.354441716916	-44859.586248965600	
150.0000000000	34.591492381591	-45019.068321098900	
155.0000000000	28.816000057537	-45063.424959973500	
160.0000000000	23.039747108275	-45037.803654975300	
165.00000000000	17.269236231355	-44979.358719664200	
170.00000000000	11.506733262883	-44917.008459083500	
175.00000000000	5.751328542416	-44871.371428412200	
180.00000000000	0.000000000000	-44854.789809719500	.00

Registered CARFOR Owner's --> Company Name

Registered CARFOR Owner's --> Company Street Address Registered CARFOR Owner's --> Company City, State, Zip Code Registered CARFOR Owner's --> Company Phone Number(s) / Fax Number(s) / Email Address Registered CARFOR Owner's --> Website

Wednesday December 23 2020

Bore = 4.0Rod Length = 5.7RPM = 6500 Stroke = 3.25Wrist Pin Offset = 0.0 58.68056 Feet per Second 17.88583 Meters per Second Piston Speed is Piston Speed is 3520.83333 Feet per Minute 1073.15000 Meters per Minute Maximum Piston Velocity 5752.115743 FPM @ 75.16255703666 Degrees Piston Travel from TDC 1.42959 Inches 36.31163 mm Bore Rod Angle 15.99669 17.96478 CI Cylinder Volume 294.38997 cc Crankshaft Degrees at which Rod and Crank are 90 Degrees 74.0878 Piston Travel from TDC 1.39789 Inches 35.50642 mm Bore Rod Angle 15.91220 Cylinder Volume 17.56641 CI 287.86192 cc Piston Piston Piston Acceleration Flow @ 28" Crank Angle Velocity Velocity CFM Degree-ATDC
 Degree-ADC
 FT/Sec
 FT/Sec
 CFM
 FT/Min

 0.0000000000
 0.0000000000
 80628.548553667500
 .00
 0.00000000000

 5.00000000000
 10.315867690807
 80134.464948046500
 27.01
 618.952061448413

 10.0000000000
 20.505378138588
 78659.956035034300
 53.68
 1230.322688315310

 15.0000000000
 30.444158841160
 76228.238574501200
 79.70
 1826.649530469610

 20.0000000000
 40.011803888645
 72877.963436680800
 104.75
 2400.708233318690

</tabular FT/Sec FT/Sec/Sec FT/Min 25.0000000000 49.093846489134 68663.101742119000 128.53 2945.630789348060
 30.0000000000
 57.583708739360
 63652.690453272700
 150.75
 3455.022524361580

 35.0000000000
 65.384605040876
 57930.346895610100
 171.18
 3923.076302452550

 40.0000000000
 72.411362768862
 51593.444420471300
 189.57
 4344.681766131720

 78.592109373199
 44751.833945225200
 205.75
 4715.526562391940

 83.869760587523
 37526.003222769100
 219.57
 5032.185635251400
 45.00000000000 50.0000000000 55.0000000000 88.203232025189 30044.592171952000 230.92 5292.193921511360
 91.568288870047
 22441.231733542600
 239.73
 5494.097332202820

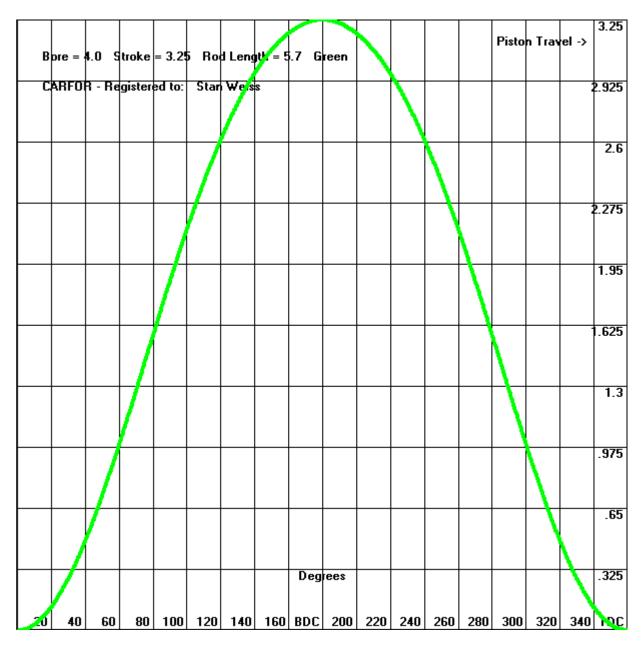
 93.957948572782
 14850.745473223300
 245.98
 5637.476914366930

 95.382362074328
 7404.842410519590
 249.71
 5722.941724459670

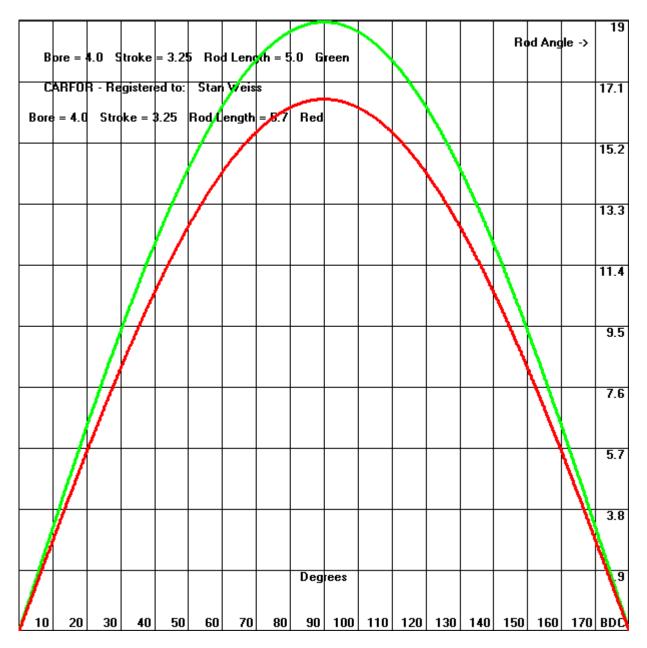
 95.66121669176
 237.55110697166
 250.98
 5722.041724459670
 60.00000000000 65.0000000000 70.0000000000 95.382362074328 75.0000000000 95.868121688176 227.525119967166 250.98 5752.087301290560 -6569.477594172750 249.91 5727.418690459630 80.00000000000 95.456978174327 249.91 5727.418690459630 94.203993176859 -12890.888497927400 246.63 5652.239590611530 85.00000000000

Bore = 101.6 Stroke = 82.55 Rod Length = 144.78 RPM = 6500 Wrist Pin Offset = 0.0 Piston Speed is 58.68056 Feet per Second 17.88583 Meters per Second Piston Speed is 3520.83333 Feet per Minute 1073.15000 Meters per Minute Piston Speed is 40.00947 MPH 64.38900 KiloMeters per Hour Maximum Piston Velocity 1753.244879 MPM @ 75.162557036658 Degrees Crankshaft Degrees at which Rod and Crank are 90 Degrees 74.0878 Piston Travel from TDC 1.39789 Inches 35.50642 mm Bore Rod Angle 15.91220 Cylinder Volume 17.56641 CI 287.86192 cc

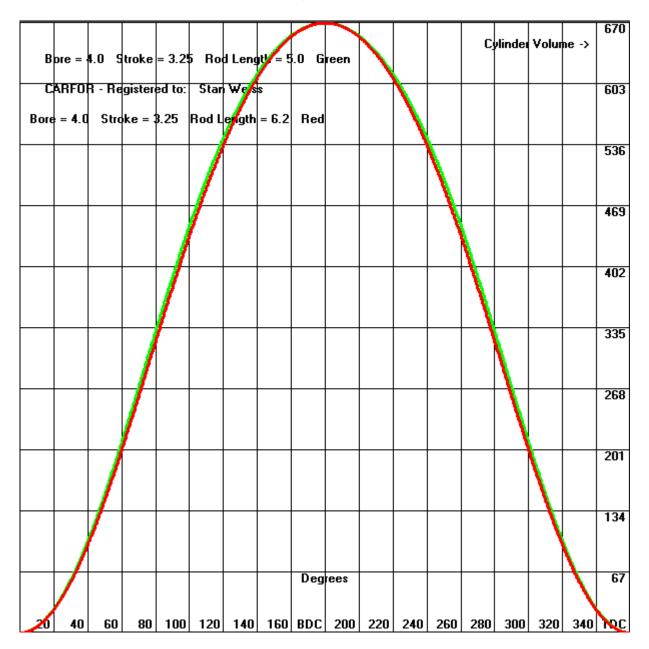
Piston	Piston	Piston
		Flow @ 28"
	l/Sec/Sec	M^3/S
-	581599157900	- •
	984916164600	0.01275
	554599478400	0.02534
	367117508000	0.03762
	203255500300	0.04944
	513410997900	0.06066
	340050157500	0.07115
	169733782000	0.08079
	681859359600	0.08947
	358986504700	0.09710
	925782300000	0.10363
	591694010960	0.10898
60.000000000 27.910014447590 6840.	087432383790	0.11314
	507220238450	0.11609
	995966726370	0.11785
75.0000000000 29.220603490556 69.	349656565992	0.11845
80.0000000000 29.095286947535 -2002.	376770703860	0.11794
85.0000000000 28.713377120307 -3929.	142814168280	0.11639
90.0000000000 28.095001301666 -5687.	963167285500	0.11389
95.0000000000 27.262805558894 -7262.	616530499370	0.11051
100.000000000 26.241063258002 -8643.	954455578300	0.10637
105.000000000 25.054771203252 -9829.	785580375660	0.10156
110.000000000 23.728786848036 -10824.	358425868100	0.09619
115.0000000000 22.287054188025 -11637.	509322343400	0.09034
120.000000000 20.751955245608 -12283.	573334196400	0.08412
125.0000000000 19.143810379845 -12780.	170690951800	0.07760
130.0000000000 17.480536226046 -13146.	978602912700	0.07086
135.0000000000 15.777456938754 -13404.	581431815300	0.06396
	466265302700	0.05694
145.0000000000 12.300033835316 -13673.	201888684700	0.04986
	812024270900	0.04274
	331927799900	0.03560
	522554036500	0.02847
	708537753600	0.02134
	704178328700	0.01422
	794011380000	0.00711
180.000000000 0.000000000 -13671.	739934002500	0.0000


Bore = 4.0 Stroke = 3.25 Rod Length = 5.7 RPM = 6500 Wrist Pin Offset = 0.06 Maximum Piston Velocity 5769.254254 FPM @ 74.65877582351 Degrees

	Piston	Piston	Piston
Crank Angle		Acceleration	
Degree	FT/Sec	FT/Sec/Sec	CFM
.000	.970	80631.522	2.54
5.000	11.284	80093.743	29.54
10.000	21.465	78574.984	56.20
15.000	31.390	76098.008	82.18
20.000	40.938	72701.091	107.18
25.000	49.994	68437.948	130.89
30.000	58.452	63377.518	153.03
35.000	66.215	57603.515	173.35
40.000	73.196	51213.644	191.63
45.000	79.325	44318.339	207.67
50.000	84.543	37038.934	221.33
55.000	88.811	29505.170	232.51
60.000	92.104	21851.998	241.13
65.000	94.415	14215.716	247.18
70.000	95.755	6729.576	250.69
75.000	96.152	-480.918	251.73
80.000	95.648	-7302.699	250.41
85.000	94.300	-13639.432	246.88
90.000	92.175	-19415.025	241.31
95.000	89.348	-24576.025	233.91
100.000	85.901	-29092.652	224.89
105.000	81.917	-32958.396	214.46
110.000	77.478	-36188.253	202.84
115.000	72.663	-38815.835	190.23
120.000	67.548	-40889.672	176.84
125.000	62.200	-42469.116	162.84
130.000	56.677	-43620.202	148.38
135.000	51.031	-44411.781	133.60
140.000	45.302	-44912.170	118.60
145.000	39.524	-45186.418 -45294.241	103.47
150.000	33.723		88.29
155.000	27.915	-45288.578	73.08
160.000	22.113	-45214.676	57.89
165.000	16.323	-45109.589	42.73
170.000	10.547	-45001.981	27.61
175.000	4.783	-44912.094	
180.000	970	-44851.817	
185.000	-6.718	-44824.766	-17.59
345.000 -	-29.500	76363.844	-77.23
	-19.547	78750.622	-51.17
355.000	-9.349	80181.071	-24.47
360.000	-9.349 .970	80631.522	2.54
500.000	• 9 / 0	00031.322	4.34


Bore = 4.0 Stroke = 3.25 Rod Length = 5.7 RPM = 6500 Wrist Pin Offset = -0.06 Maximum Piston Velocity on Down Stroke 5735.684153 FPM @ 75.66890445522 Degrees

	Piston	Piston	Piston
Crank Angle	Velocity	Acceleration	Flow @ 28"
Degree	FT/Sec	FT/Sec/Sec	CFM
.000	970	80631.522	-2.54
5.000	9.349	80181.071	24.47
10.000	19.547	78750.622	51.17
15.000	29.500	76363.844	77.23
20.000	39.088	73059.759	102.33
25.000	48.197	68892.593	126.18
30.000	56.719	63931.480	148.49
35.000	64.559	58259.942	169.02
40.000	71.631	51975.030	187.53
45.000	77.864	45186.028	203.85
50.000	83.201	38012.601	217.82
55.000	87.600	30582.324	229.34
60.000	91.037	23027.551	238.34
65.000	93.505	15481.684	244.80
70.000	95.013	8074.945	248.74
75.000	95.587	929.895	250.25
80.000	95.267	-5843.023	249.41
85.000	94.109	-12149.548	246.38
90.000	92.175	-17914.919	241.31
95.000	89.540	-23086.141	234.42
100.000	86.282	-27632.976	225.89
105.000	82.482	-31547.583	215.94
110.000	78.220	-34842.884	204.78
115.000	73.573	-37549.867	192.61
120.000	68.615	-39714.118	179.63
125.000	63.411	-41391.962	166.01
130.000	58.020	-42646.534	151.89
135.000	52.491	-43544.092	137.42
140.000	46.867	-44150.784	122.70
145.000	41.180	-44529.992	107.81
150.000	35.456	-44740.279	92.82
155.000	29.713	-44833.934	77.79
160.000	23.963	-44856.008	62.74
165.000	18.213	-44843.754	47.68
170.000	12.465	-44826.342	32.63
175.000	6.718	-44824.766	17.59
180.000	.970	-44851.817	2.54
185.000	-4.783	-44912.094	-12.52
190.000 ·	-10.547	-45001.981	-27.61


Graph Piston Travel

Graph Rod Bore Angle

Graph Cylinder Volume

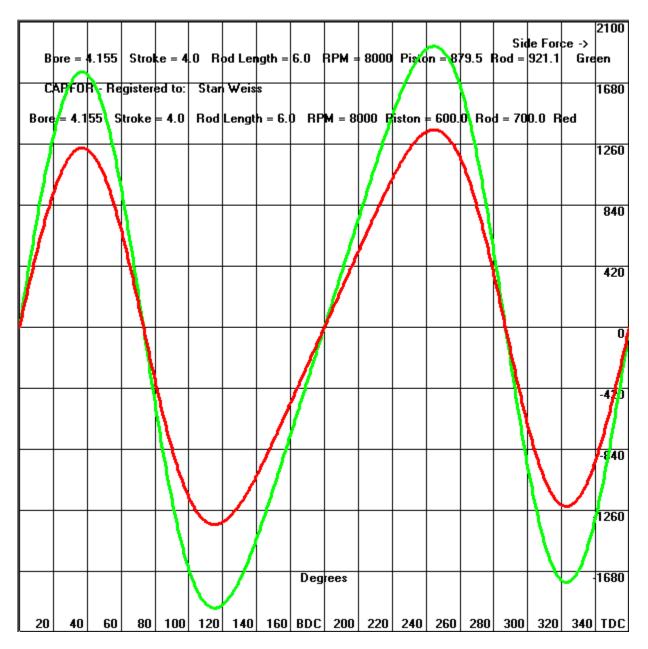
Calculate **Piston Travel, Crank Rod Angle, Rod Bore Angle, and Cylinder Volume** in both Cl and cc, showing results every "X" Crankshaft degrees. Also will show at what Crankshaft degrees the Rod and Crank are at 90 degrees to each other. Using Bore, Stroke, RPM, Wrist Pin Offset, and Rod Length.

Bore = 4.			od Length	= 5.7 RP	M = 6500
	Offset =				
		ank per deg			0.0256410
		ank per rev	in Millis	econds	9.2307692
	t rev's pe				108.3333333
Crankshaf	t Degrees	at which Ro	d and Cran	k are 90 D	egrees 74.0878
Crank	Piston	Crank	Rod	Cylinder	Cylinder
Angle	Travel	Rod	Bore	Volume	Volume
Degree	Inches	Angle	Angle	CI	CC
-ATDC .0000	.000000	180.00000	0.00000	0.00000	0.00000
5.0000	.007943	173.57622	1.42378	0.09982	1.63575
10.0000	.007943	167.16241	2.83759	0.39806	6.52297
	.070908		4.23148	0.39808	
15.0000		160.76852			14.60184
20.0000	.125160	154.40444	5.59556	1.57281	25.77373
25.0000	.193772	148.08001	6.91999	2.43501	39.90274
30.0000	.275914	141.80492	8.19508	3.46724	56.81792
35.0000	.370599	135.58875	9.41125	4.65709	76.31603
40.0000	.476701	129.44083	10.55917	5.99040	98.16499
45.0000	.592970	123.37020	11.62980	7.45147	122.10780
50.0000	.718059	117.38552	12.61448	9.02340	147.86696
55.0000	.850546	111.49500	13.50500	10.68827	175.14944
60.0000	.988957	105.70626	14.29374	12.42760	203.65181
65.0000	1.131794	100.02621	14.97379	14.22254	233.06571
70.0000	1.277563	94.46096	15.53904	16.05433	263.08328
75.0000	1.424796	89.01572	15.98428	17.90452	293.40253
80.0000	1.572081	83.69463	16.30537	19.75536	323.73231
85.0000	1.718078	78.50075	16.49925	21.59001	353.79687
90.0000	1.861542	73.43591	16.56409	23.39282	383.33972
95.0000	2.001335	68.50075	16.49925	25.14951	412.12666
100.0000	2.136438	63.69463	16.30537	26.84727	439.94796
105.0000	2.265958	59.01572	15.98428	28.47487	466.61957
110.0000	2.389128	54.46096	15.53904	30.02267	491.98342
115.0000	2.505303	50.02621	14.97379	31.48257	515.90688
120.0000	2.613957	45.70626	14.29374	32.84795	538.28143
125.0000	2.714669	41.49500	13.50500	34.11354	559.02076
130.0000	2.807119	37.38552	12.61448	35.27529	578.05851
135.0000	2.891067	33.37020	11.62980	36.33021	595.34554
140.0000	2.966345	29.44083	10.55917	37.27619	610.84732
145.0000	3.032844	25.58875	9.41125	38.11184	624.54110
150.0000	3.090497	21.80492	8.19508	38.83633	636.41342
155.0000	3.139273	18.08001	6.91999 5.50556	39.44926	646.45760
160.0000	3.179161	14.40444	5.59556	39.95052	654.67170
165.0000	3.210167	10.76852	4.23148	40.34015	661.05663
170.0000	3.232301	7.16241	2.83759	40.61830	665.61466
175.0000	3.245576	3.57622	1.42378	40.78511	668.34826
180.0000	3.250000	0.00000	0.00000	40.84070	669.25924

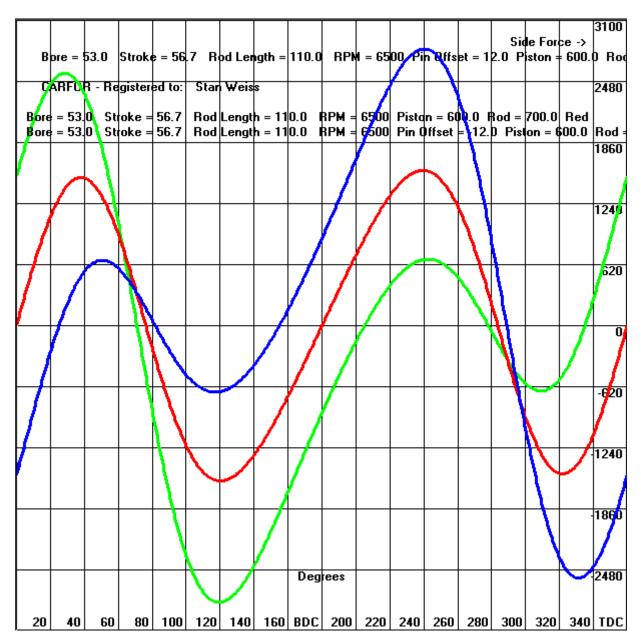
Bore = 101.6 Stroke = 82.55 Rod Length = 144.78 RPM = 6500 Wrist Pin Offset = 0.0 Rotation Time of crank per degree in Milliseconds 0.0256410 Rotation Time of crank per rev in Milliseconds 9.2307692 Crankshaft rev's per Second 108.333333 Crankshaft Degrees at which Rod and Crank are 90 Degrees 74.0878

Crank	Piston	Crank	Rod	Cylinder	Cylinder
Angle	Travel	Rod	Bore	Volume	Volume
Degree	mm	Angle	Angle	CI	cc
-ATDC					
.0000	.000000	180.00000	0.00000	0.00000	0.00000
5.0000	.201763	173.57622	1.42378	0.09982	1.63575
10.0000	.804578	167.16241	2.83759	0.39806	6.52297
15.0000	1.801069	160.76852	4.23148	0.89106	14.60184
20.0000	3.179069	154.40444	5.59556	1.57281	25.77373
25.0000	4.921817	148.08001	6.91999	2.43501	39.90274
30.0000	7.008224	141.80492	8.19508	3.46724	56.81792
35.0000	9.413226	135.58875	9.41125	4.65709	76.31603
40.0000	12.108193	129.44083	10.55917	5.99040	98.16499
45.0000	15.061426	123.37020	11.62980	7.45147	122.10780
50.0000	18.238699	117.38552	12.61448	9.02340	147.86696
55.0000	21.603864	111.49500	13.50500	10.68827	175.14944
60.0000	25.119499	105.70626	14.29374	12.42760	203.65181
65.0000	28.747566	100.02621	14.97379	14.22254	233.06571
70.0000	32.450094	94.46096	15.53904	16.05433	263.08328
75.0000	36.189831	89.01572	15.98428	17.90452	293.40253
80.0000	39.930867	83.69463	16.30537	19.75536	323.73231
85.0000	43.639191	78.50075	16.49925	21.59001	353.79687
90.0000	47.283163	73.43591	16.56409	23.39282	383.33972
95.0000	50.833897	68.50075	16.49925	25.14951	412.12666
100.0000	54.265525	63.69463	16.30537	26.84727	439.94796
105.0000	57.555343	59.01572	15.98428	28.47487	466.61957
110.0000	60.683856	54.46096	15.53904	30.02267	491.98342
115.0000	63.634703	50.02621	14.97379	31.48257	515.90688
120.0000	66.394499	45.70626	14.29374	32.84795	538.28143
125.0000	68.952599	41.49500	13.50500	34.11354	559.02076
130.0000	71.300816	37.38552	12.61448	35.27529	578.05851
135.0000	73.433091	33.37020	11.62980	36.33021	595.34554
140.0000	75.345162	29.44083	10.55917	37.27619	610.84732
145.0000	77.034227	25.58875	9.41125	38.11184	624.54110
150.0000	78.498621	21.80492	8.19508	38.83633	636.41342
155.0000	79.737525	18.08001	6.91999	39.44926	646.45760
160.0000	80.750695	14.40444	5.59556	39.95052	654.67170
165.0000	81.538246	10.76852	4.23148	40.34015	661.05663
170.0000	82.100458	7.16241	2.83759	40.61830	665.61466
175.0000	82.437635	3.57622	1.42378	40.78511	668.34826
180.0000	82.550000	0.00000	0.00000	40.84070	669.25924

Bore = 4.0Stroke = 3.25Rod Length = 5.7RPM = 6500Wrist Pin Offset = 0.06Rotation Time of crank per degree in Milliseconds 0.0256410 Rotation Time of crank per rev in Milliseconds 9.2307692 Crankshaft rev's per Second 108.3333333 Actual Piston Stroke 3.25019600382 Cylinder Volume 40.843168 CI 669.299602 cc Engine Size 326.745340 CI 5354.396814 cc Crank Angle Piston TDC -0.46932221356 Piston BDC 179.15635067565 Crank Piston Rod Cylinder Cylinder Angle Travel Angle Volume Volume Degree Inches CI CC 0.00000000 0.00007006031 0.60312 0.00088 0.01443 5.00000000 0.00950512407 2.02717 0.11944 1.95735 10.00000000 0.03472163354 3.44161 0.43632 7.15008 15.00000000 0.07542040487 4.83649 0.94776 15.53102 20.00000000 0.13111351188 6.20188 1.64762 26.99967 25.00000000 0.20113183435 7.52794 2.52750 41.41826 30.00000000 0.28463564913 8.80489 3.57684 58.61386 35.00000000 0.38062822028 10.02314 4.78312 78.38122 40.00000000 0.48797229827 11.17330 100.48614 6.13204 45.00000000 0.60540937015 12.24625 7.60780 124.66948 50.00000000 0.73158141144 13.23327 9.19332 150.65158 55.00000000 0.86505477718 14.12608 10.87060 178.13720 60.00000000 1.00434573922 14.91700 12.62098 206.82082 65.00000000 1.14794704005 15.59903 14.42553 236.39205 70.00000000 1.29435470377 16.16600 16.26534 266.54118 75.00000000 1.44209424096 16.61265 18.12189 296.96458 19.97733 80.00000000 1.58974532547 16.93478 327.36977 85.00000000 1.73596402470 17.12931 21.81477 357.47999 90.00000000 1.87950174269 17.19436 23.61852 387.03813 95.00000000 2.01922018863 17.12931 25.37427 415.80977 100.00000000 2.15410190289 16.93478 27.06924 443.58542 105.00000000 2.28325613754 16.61265 28.69224 470.18162 110.00000000 2.40592016958 16.16600 30.23368 495.44132 519.23323 15.59903 115.00000000 2.52145639071 31.68556 120.00000000 2.62934573922 14.91700 33.04133 541.45044 125.00000000 2.72917819532 14.12608 34.29586 562.00853 130.00000000 2.82064114292 13.23327 35.44522 580.84312 135.00000000 2.90350640900 12.24625 36.48654 597.90723 140.00000000 2.97761673841 11.17330 37.41784 613.16847 145.00000000 3.04287236422 10.02314 38.23786 626.60629 150.00000000 3.09921821143 8.80489 38.94592 638.20936 155.00000000 3.14663214222 7.52794 39.54175 647.97312 160.00000000 3.18511452943 6.20188 40.02533 655.89764 165.00000000 3.21467934031 40.39685 661.98580 4.83649 170.00000000 3.23534683083 3.44161 40.65657 666.24177 2.02717 175.00000000 3.24713789286 40.80474 668.66986 180.00000000 3.25007006031 0.60312 40.84158 669.27367 185.00000000 3.24415516275 -0.82054 40.76726 668.05564 190.0 3.22939861126 -2.23388 40.58182 665.01688

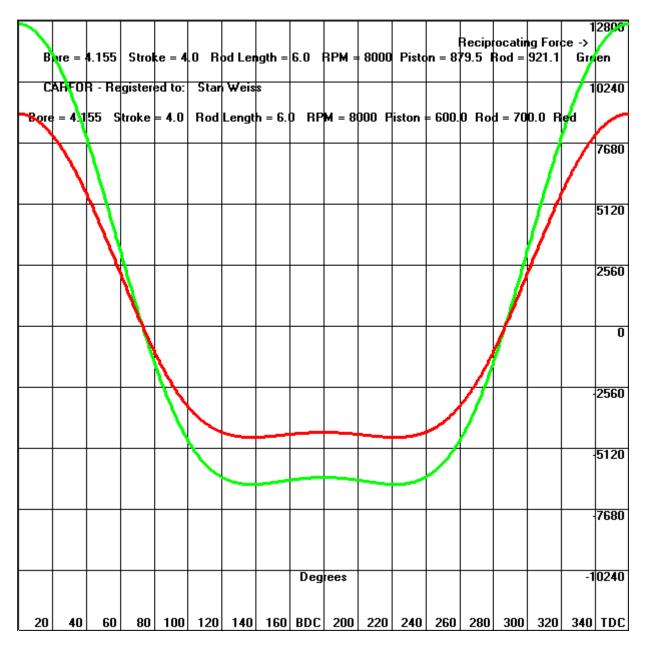

Bore = 4.0 St Wrist Pin Offse		od Length	= 5.7 RP	M = 6500
Rotation Time o		roo in Mil	ligogonda	0.0256410
Rotation Time o				9.2307692
Crankshaft rev'		III MIIIIS	econus	108.33333333
Actual Piston S		0202		T00.3333333
Cylinder Volume			299602 cc	
Engine Size	326.745340 CI		396814 cc	
Crank Angle Pis				80.84364932435
Clair Angle Fib	con ibc 0.40952	221330 FI	SCOIL PDC I	00.01301932133
Crank	Piston	Rod	Cylinder	Cylinder
Angle	Travel	Angle	Volume	Volume
Degree	Inches		CI	CC
0.00000000	0.00007006031	-0.60312	0.00088	0.01443
5.00000000	0.00652239396	0.82054	0.08196	1.34313
10.00000000	0.02877341397	2.23388	0.36158	5.92519
15.000000000	0.06654136967	3.62694	0.83618	13.70259
20.00000000	0.11935613763	4.98986	1.49987	24.57852
25.000000000	0.18656691611	6.31283	2.34447	38.41896
30.00000000	0.26735291564	7.58619	3.35966	55.05490
35.00000000	0.36073698645	8.80043	4.53315	74.28510
40.00000000	0.46560207813	9.94627	5.85093	95.87954
45.00000000	0.58071036086	11.01472	7.29742	119.58332
50.00000000	0.70472474996	11.99718	8.85583	145.12109
55.000000000	0.83623246784	12.88553	10.50841	172.20194
60.00000000	0.97377015507	13.67221	12.23676	200.52451
65.000000000	1.11584991453	14.35038	14.02218	229.78242
70.00000000	1.26098555360	14.91398	15.84601	259.66961
75.000000000	1.40771819525	15.35788	17.68991	289.88566
80.00000000	1.55464037805	15.67797	19.53619	320.14075
85.00000000	1.70041777280	15.87125	21.36808	350.16009
90.00000000	1.84380771975	15.93588	23.16997	379.68780
95.00000000	1.98367393673	15.87125	24.92758	408.48988
100.00000000	2.11899695547	15.67797	26.62810	436.35640
105.00000000	2.24888009184	15.35788	28.26026	463.10270
110.00000000	2.37255101941	14.91398	29.81436	488.56975
115.00000000	2.48935926518	14.35038	31.28221	512.62360
120.00000000	2.59877015507	13.67221	32.65711	535.15413
125.00000000	2.70035588598	12.88553	33.93367	556.07327
130.00000000	2.79378448145	11.99718	35.10773	575.31264
135.00000000	2.87880739972	11.01472	36.17616	592.82106
140.00000000	2.95524651827	9.94627	37.13672	608.56186
145.00000000	3.02298113039	8.80043	37.98790	622.51017
150.00000000	3.08193547794	7.58619	38.72874	634.65040
155.00000000	3.13206722398	6.31283	39.35872	644.97382
160.00000000	3.17335715519	4.98986	39.87758	653.47649
165.00000000	3.20580030511	3.62694	40.28527	660.15738
170.00000000	3.22939861126	2.23388	40.58182	665.01688
175.00000000	3.24415516275	0.82054	40.76726	668.05564
180.00000000	3.25007006031	-0.60312	40.84158	669.27367
185.00000000	3.24713789286	-2.02717	40.80474	668.66986
190.000000000	3.23534683083	-3.44161	40.65657	666.24177

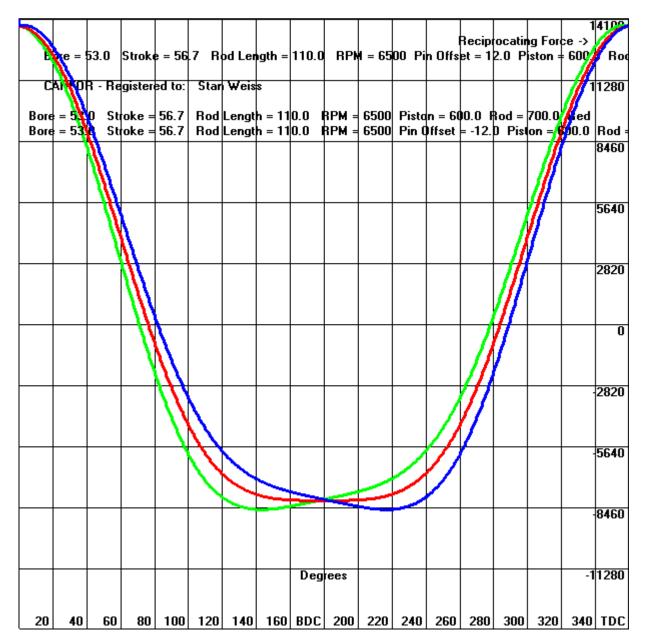
Calculate **Crankpin Load,** showing result ever X Crankshaft Degrees. Using Bore, Stroke, RPM, Rod Length, Piston Weight, Wrist Pin Offset, and Rod Weight.


Bore = 87.0 Stro	-) RPM = 8520
Wrist Pin Offset = Piston Weight = 50		
	Crankpin	
Crank Angle	Load	
Degree	Newtons	
0.0000000000	45403.923384	
5.0000000000	45123.258302	
10.0000000000	44285.613844	
15.0000000000	42904.046616	
20.0000000000	41000.323396	
25.00000000000	38604.900655	
30.0000000000	35756.838112	
35.0000000000	32503.590398	
40.0000000000	28900.609049	
45.00000000000	25010.680656	
50.0000000000	20902.929206	
55.00000000000	16651.424934	
60.0000000000	12333.370825	
65.0000000000	8026.881994	
70.0000000000	3808.429766	
75.0000000000	-249.915560	
80.0000000000	-4083.252209	
85.0000000000	-7636.394815	
90.0000000000	-10865.964112	
95.0000000000	-13741.808643	
100.0000000000	-16247.613979	
105.0000000000	-18380.647133	
110.0000000000	-20150.685797	
115.00000000000	-21578.274222	
120.0000000000	-22692.512929	
125.0000000000	-23528.618232	
130.0000000000	-24125.478984	
135.0000000000	-24523.399182	
140.0000000000	-24762.158180	
145.00000000000	-24879.458161	
150.0000000000	-24909.772128	
155.0000000000	-24883.561732	
160.0000000000	-24826.805603	
165.0000000000	-24760.764796	
170.0000000000	-24701.909908	
175.0000000000	-24661.941080	
180.0000000000	-24647.844123	
185.0000000000	-24661.941080	
190.0000000000	-24701.909908	
195.00000000000	-24760.764796	
200.0000000000	-24826.805603	
205.0000000000	-24883.561732	
210.0	-24909.772128	

Graph Side Force

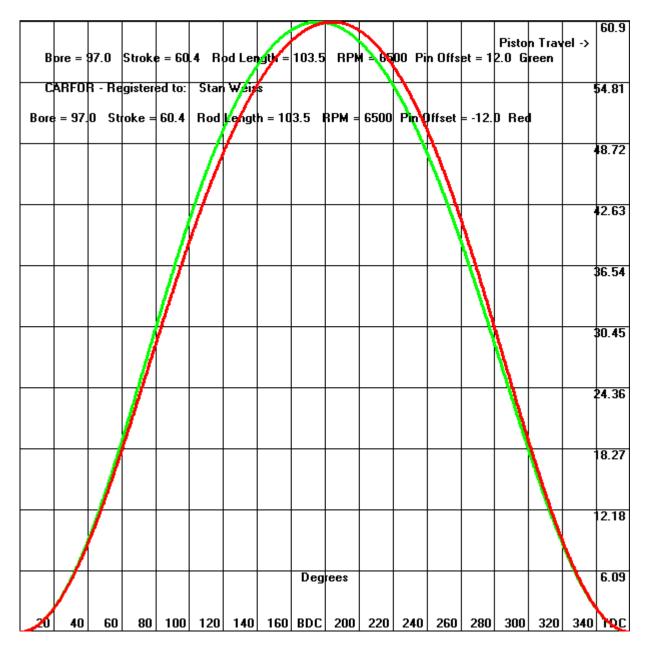
The green line is piston combo 879.5 grams rod combo 921.1 grams The red line is piston combo 600 grams rod combo 700 grams The reciprocating force hits zero when Crank and rod are 90 Degrees 71.565 degree ATDC. I let the program calculate the rod small end weight.



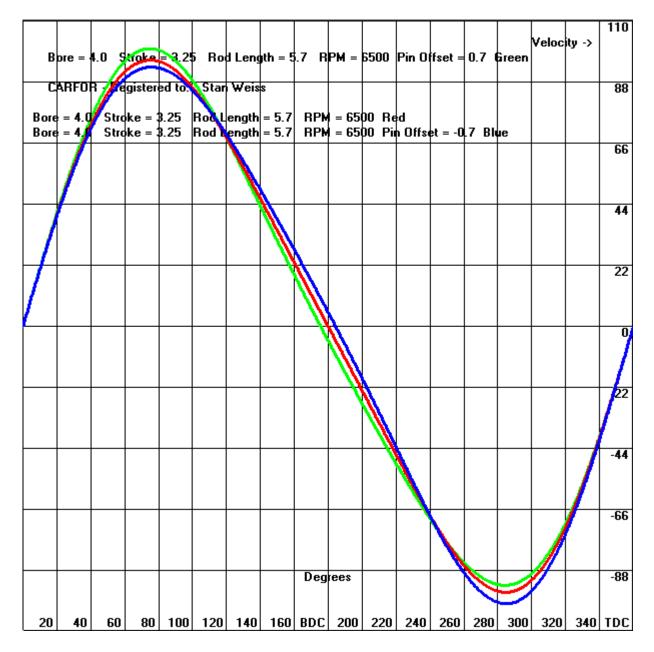

Shows the effects of wrist pin offset

Graph Reciprocating Force

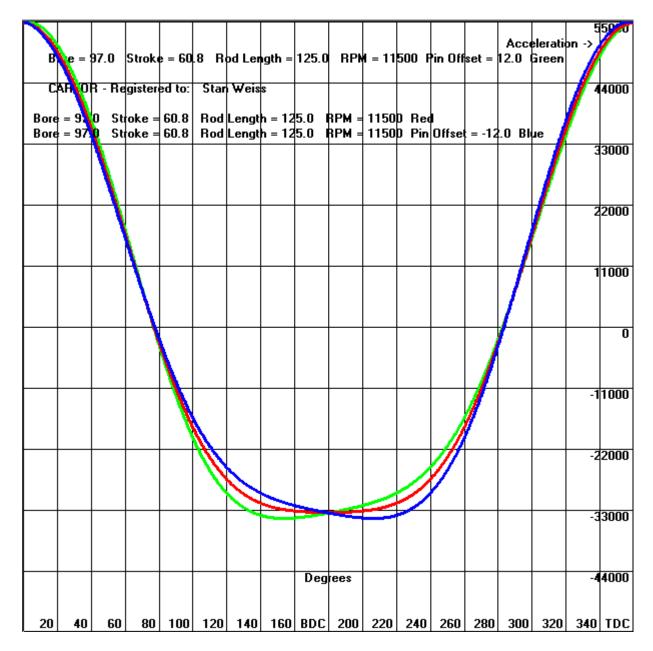
The green line is piston combo 879.5 grams rod combo 921.1 grams The red line is piston combo 600 grams rod combo 700 grams The reciprocating force hits zero when Crank and rod are 90 Degrees 71.565 degree ATDC. I let the program calculate the rod small end weight.

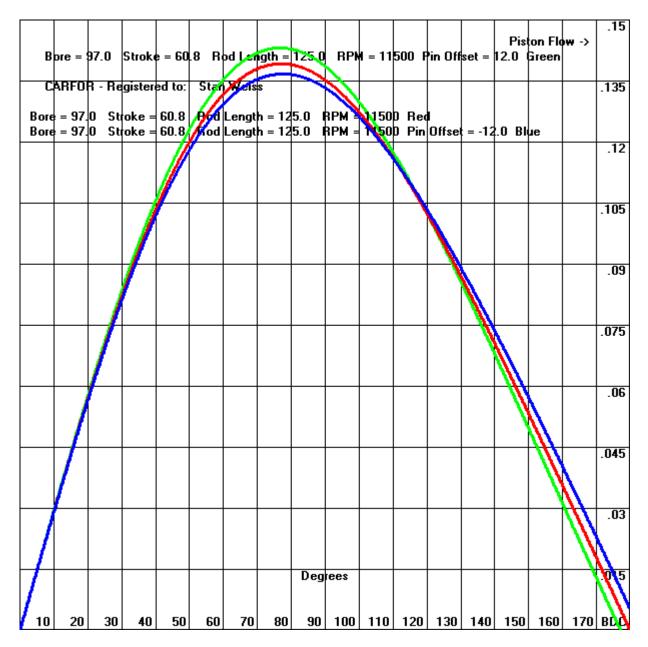

Calculate **Crankpin Force**, showing result ever X Crankshaft Degrees. Using Bore, Stroke, RPM, Rod Length, Piston Weight, Wrist Pin Offset, and Rod Weight.

Note: Piston and Rod weights must be entered in grams. Piston weight includes the weight of rings, wrist pin, and any pin locks or buttons.


```
Bore = 4.0 Stroke = 3.25 Rod Length = 5.7 RPM = 6500
Wrist Pin Offset = 0.0
Piston Weight = 600.25 Rod Weight = 700.5
Small End Rod Weight = 233.5 Big End Rod Weight = 467.0
Rod CG / Distance from Small End = 3.8 GAS PRESSURE = 0
Crankpin / Rod Big End Acceleration = 62741.66
Crankpin / Rod Big End Rotational Force = 2007.712
```

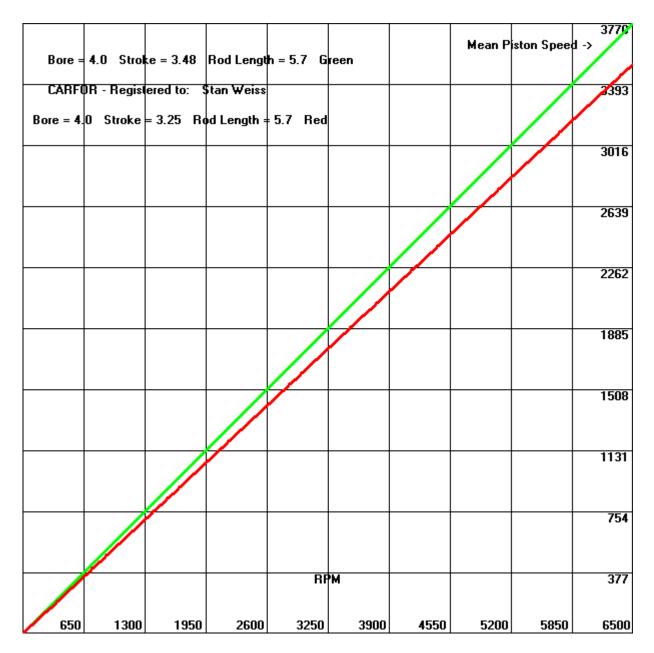
	Reciprocating	Total	Piston Side	Piston
Crank Angle	Force	Force	Force	Inertia Force
Degree	Pounds	Pounds	Pounds	Pounds
.000	4606.310	6614.023	.000	3316.267
10.000	4493.845	6480.440	222.741	3235.299
20.000	4163.519	6088.995	407.911	2997.484
30.000	3636.479	5468.144	523.706	2618.047
40.000	2947.534	4667.490	549.442	2122.048
50.000	2143.861	3763.043	479.779	1543.452
60.000	1282.068	2872.043	326.646	923.012
70.000	423.039	2188.802	117.629	304.563
80.000	-375.314	1977.391	-109.788	-270.204
90.000	-1066.120	2273.218	-317.097	-767.543
100.000	-1620.175	2790.265	-473.937	-1166.429
110.000	-2028.858	3306.587	-564.141	-1460.656
120.000	-2302.365	3735.542	-586.598	-1657.565
130.000	-2464.197	4057.515	-551.467	-1774.074
140.000	-2544.135	4281.270	-474.246	-1831.625
150.000	-2571.940	4426.014	-370.397	-1851.643
160.000	-2573.011	4512.199	-252.084	-1852.413
170.000	-2566.109	4556.677	-127.191	-1847.445
180.000	-2562.555	4570.267	.000	-1844.886
190.000	-2566.109	4556.677	127.191	-1847.445
200.000	-2573.011	4512.199	252.084	-1852.413
210.000	-2571.940	4426.014	370.397	-1851.643
220.000	-2544.135	4281.270	474.246	-1831.625
230.000	-2464.197	4057.515	551.467	-1774.074
240.000	-2302.365	3735.542	586.598	-1657.565
250.000	-2028.858	3306.587	564.141	-1460.656
260.000	-1620.175	2790.265	473.937	-1166.429
270.000	-1066.120	2273.218	317.097	-767.543
280.000	-375.314	1977.391	109.788	-270.204
290.000	423.039	2188.802	-117.629	304.563
300.000	1282.068	2872.043	-326.646	923.012
310.000	2143.861	3763.043	-479.779	1543.452
320.000	2947.534	4667.490	-549.442	2122.048
330.000	3636.479	5468.144	-523.706	2618.047
340.000	4163.519	6088.995	-407.911	2997.484
350.000	4493.845	6480.440	-222.741	3235.299
360.000	4606.310	6614.023	.000	3316.267


Graph Piston Travel at various Pin Offsets (Degree Wheel).

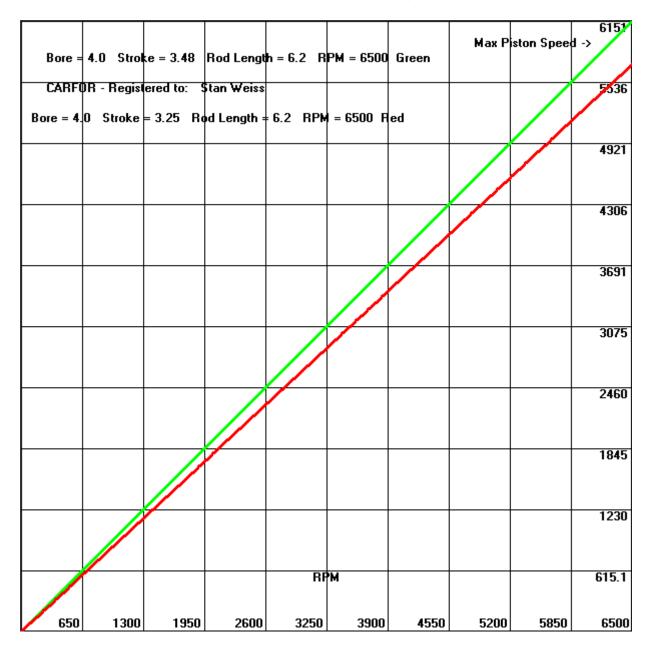

Graph Piston Velocity at various Pin Offsets (Degree Wheel).

Graph Piston Acceleration at various Pin Offsets (Degree Wheel).

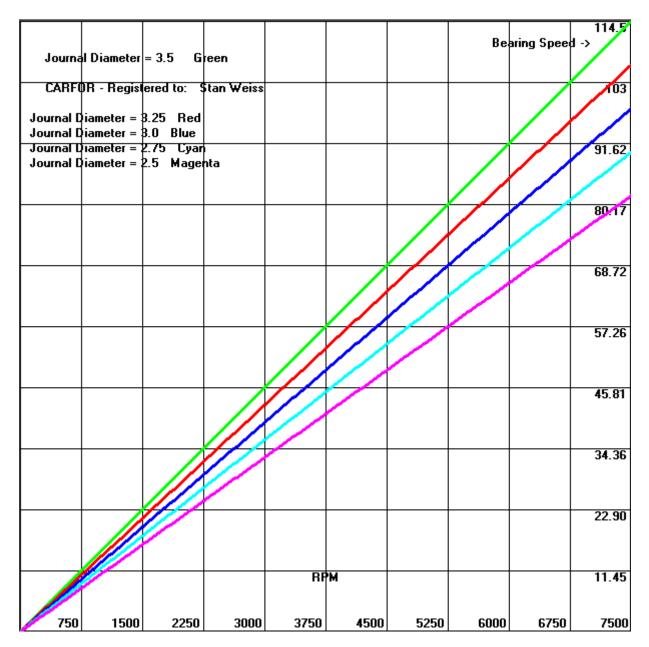
Graph Piston Flow at various Pin Offsets (Degree Wheel).



Calculate **Piston Travel, Piston Acceleration and Velocity, (Degree Wheel)** showing result ever X Degrees. Using Bore, Stroke, Wrist Pin Offset, RPM, and Rod Length. This also shows **Piston Flow @ 28 inches of water** to give you an idea of what cylinder head flow should be. This will show the same valves as 12 & 13 as long as wrist pin offset is equal to zero. When there is a wrist pin offset this will use the piston ATDC for zero degrees whereas 12 & 13 use the rod journal position.


Bore = 4.0 Stroke = 3.25 Rod Length = 5.7 RPM = 6500 Wrist Pin Offset = 0.1 Maximum Piston Velocity 5781.079250 FPM @ 75.106549704470 Degrees

Degree		Piston	Piston	Piston
Wheel	Piston	Velocity	Acceleration	Flow @ 28"
Reading	Travel	FT/Sec	FT/Sec/Sec	CFM
.000000	.000000	0.00000000	80636.063126519	.00
5.000000	.007947	10.322084060	80223.678572800	27.02
10.000000	.031701	20.528120767	78827.766293294	53.74
15.000000	.070987	30.493134351	76468.352084977	79.83
20.000000	.125340	40.095713985	73181.024924057	104.97
25.000000	.194113	49.220008051	69016.906097804	128.86
30.000000	.276485	57.757707080	64042.490264067	151.21
35.000000	.371477	65.609993414	58339.268491123	171.77
40.000000	.477965	72.689422762	52003.022843175	190.30
45.000000	.594702	78.921687751	45142.670630607	206.62
50.000000	.720336	84.247198021	37878.539226869	220.56
55.000000	.853437	88.622397260	30339.974834923	232.01
60.000000	.992519	92.020727977	22662.235061537	240.91
65.000000	1.136071	94.433152651	14982.686765302	247.23
70.000000	1.282581	95.868148454	7436.423289625	250.98
75.000000	1.430562	96.351113901	151.518154058	252.25
80.00000	1.578579	95.923159992	-6755.771569693	251.13
85.000000	1.725271	94.639303337	-13185.470606977	247.77
90.000000	1.869372	92.566129612	-19057.617358003	242.34
95.000000	2.009724	89.779045364	-24314.900118149	235.04
100.000000	2.145290	86.359276733	-28923.936562947	226.09
105.000000	2.275163	82.390798045	-32875.083565087	215.70
110.000000	2.398562	77.957376891	-36180.833363547	204.09
115.000000	2.514835	73.139904748	-38873.010035304	191.48
120.000000	2.623450	68.014146647	-40999.098287898	178.06
125.000000	2.723987	62.648996287	-42618.096449925	164.01
130.000000	2.816125	57.105272313	-43796.283150073	149.50
135.000000	2.899630	51.435044568	-44603.231991670	134.66
140.000000	2.974344	45.681441771	-45108.318954951	119.59
145.000000	3.040164	39.878867242	-45377.864568259	104.40
150.000000	3.097036	34.053537464	-45472.955804694	89.15
155.000000	3.144942	28.224257774	-45447.914029029	73.89
160.000000	3.183885	22.403357545	-45349.321214427	58.65
165.000000	3.213883	16.597720596	-45215.487357331	43.45
170.000000	3.234964	10.809862307	-45076.234001967	28.30
175.000000	3.247153	5.039020555	-44952.876751878	13.19
180.000000	3.250476	-0.717758472	-44858.308199295	-1.88
185.000000	3.244950	-6.464547431	-44797.107349714	-16.92
190.000000	3.230588	-12.205478089	-44765.629160421	-31.95
195.000000	3.207396	-17.943690675	-44752.056279527	-46.98
200.000000	3.175377	-23.680287849	-44736.423376011	-61.99
205.000000	3.134535	-29.413291919	-44690.651885145	-77.00
210.000000	3.084880	-35.136610435	-44578.658707215	-91.99


Graph Mean Piston Speed

Graph Max Piston Velocity

Graph Bearing Speed

-Engine Deta Bore		Stroke	0.05	Compression Compressed	Ratio —	Head Gasket		C <u>R</u>
Dore	4.0		3.25	Head Gasket	.021	Bore Size	4.01	Chamber <u>V</u> ol
Comp Ratio	13.59405	New CR	0.0	Combustion	65.0	Dome/Dish Volume cc	19.5	
HorsePower Dish Calcula	555.0	HP Increase	0.0	Chamber Vol Total Vol	75.3	Piston to Deck Clearance	0.0	CR T <u>o</u> tal Vol
Dish Bore	3.880	Dish Depth	0.060	Top Ring Land Diameter	3.965	Depth of First Ring	0.250	D <u>o</u> me Vol
Dish Volume - cc	11.63	Bore Bottom Radius	0.0	Piston Depth	1.0	CC's Poured	197.1	Do <u>m</u> e Vol
Dish Volume	e Dish I	Depth	Dish Bore	Head Gasket Volume - cc	4.347	Ring Volume	0.897	HP Increase Graph CR Tot Vo
Swept / Cylinder Volume	40.84	Quench / Squisł Clearance	0.039	Cylinder Volume - cc	669.259	Gasket CC	CC Ring	Graph CC Vol CR
Deck Volume @ TDC	0.0	Inch of Deck per cc	0.00485	cc per 0.001 Deck	0.2059	cc per 0.001 Head Gasket	0.2069	
Chart CR Tot	/ol Chart C	R Tot Vol Cha	art CR CC Vol	CR Dome/Dish V	ol CR Gas	et Thick. Gas	ket Thickness	Graph Plus
								10HPP11H
								Quit

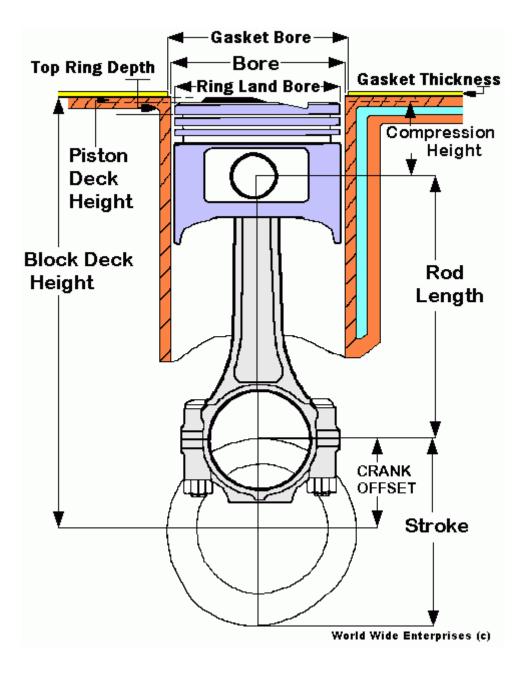
C R – Compression Ratio

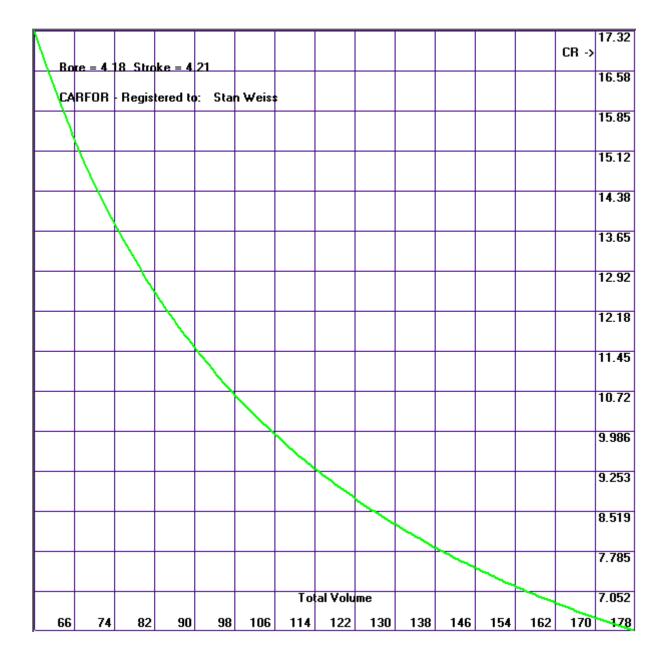
Lets the user vary different inputs to see how they will change the CR. As an example you already have a piston and cylinder head, now what head gasket thickness will give the CR you want. If you are looking to bore or stroke your engine you can see what that change will do the CR.

- 1) Calculate Compression Ratio from Bore, Stroke, Combustion Chamber Volume, Dome Volume, Piston to Deck Clearance, Head Gasket compressed thickness, Head Gasket Bore Size, Depth of First Ring and Piston Top Ring Land Diameter.
 - a. If the piston is above the block deck use (-) for Piston to Deck Clearance value.
 - b. For dished pistons or flat top pistons with valve relief use (-) for dome volume.
 - c. The user can enter the head gasket bore size and thickness or the head gasket volume in cc's to enter the volume in cc's you must check the head gasket cc box.
 - d. The user can enter the depth of the first ring from the top of the piston and the diameter of the piston above the first ring or the volume above the top ring in cc's to enter the volume in cc's you must check the ring cc box.
- 2) Calculate Combustion Chamber Volume from Bore, Stroke, CR and all other inputs needed to calculate CR except Combustion Chamber Volume.
- 3) Calculate Total Volume from Bore, Stroke, and CR.
- 4) Calculate CR from Bore, Stroke, and Total Volume.

The user should first use #3 above to calculate Total Volume. Then you can vary the Total Volume to see how that will change the Compression Ratio.

- 5) Calculate Dome Volume from Bore, Stroke, CR and all other inputs needed to calculate CR Calculate Compression Ratio from Bore, Stroke, Combustion Chamber Volume, Dome Volume, Piston except Dome Volume.
- 6) Calculate Dome Volume from Bore size and piston depth using CC's poured into cylinder.
- 7) Estimate the Horsepower gain from increasing the Compress Ratio.
- 8) Graph CR against Total Volume from Bore, Stroke, and Total Volume.
- 9) Graph CR against Combustion Chamber Volume from Bore, Stroke, and Total Volume.
- 10) Calculate Dish Volume from Dish Bore and Dish Depth.
- 11) Calculate Dish Depth from Dish Volume and Dish Bore.


56 - CARFOR Performance Software by Stan Weiss / World Wide Enterprises


- 12) Chart CR against needed Total Volume from all Inputs needed to Calculate CR
- 13) Chart CR against needed Combustion Chamber from all Inputs needed to Calculate CR.
- 14) Chart CR against needed Dome / Dish Volume from all Inputs needed to Calculate CR.
- 15) Chart CR against needed Head Gasket Thickness from all Inputs needed to Calculate CR.
- 16) Calculate Head Gasket Thickness Needed from Head Gasket Bore Size, and Head Gasket Volume cc Wanted.

Total Volume – This is the volume measured with the piston ATDC with the head installed with a head gasket and the valves closed thru the spark plug hole.

If the **Head Gasket CC box** is checked the user will enter the **Head Gasket Volume cc** amount, or else the program will calculate it from Head Gasket Thickness and Head Gasket Bore Size.

If the **Ring CC box** is checked the user will enter the **Ring Volume cc** which is the amount of cc's above the top ring, or else the program will calculate this value from Top Ring Land Diameter, Depth of First Ring and Bore.

ore	eather Det	Stroke	3.25	Compression	165.5	Intake Closes	95.5	Compress Gauge
Comp Ratio	13.59405	Rod Length	5.7	Gauge Temperature	59.0	ABDC Barometric	29.92	CR Comp Gauge
ynamic CR		% Cylinder Vol				Pressure Down Doint		Comp Gauge DOS
·	7.432	@ Intake Closing	52.123	Humidity	5.0	Dew Point	55.0	
st. Octane leeded Iron	96.16	Water Temperature	170	Vapor Pressure	0.563	Sat Vapor Pressure	1.03028	CR Comp Ga DOS
leads)ynamic :troke	1.7036	Running Inlet Air Temperature	120	Wrist Pin Offset	0.00000000	Actual Piston Stroke	3.25	DCR -> Comp Ratio
rank Angle	10	Cylinder Vol @ Intake Close cc's	350.8098	Cylinder Vol @ Intake Close ci		Swept / Cylinder	669.259	Offset Needed
				· Intake close c		Volume		Graph First
⊙ DC R Cylinder		· (PSI)	0.0	SP/BP (In Hg)		lg) C IVC/CR		Graph +1
Pressure		iston Pressure	Turning Ford	e V 4.3.1		t T Ford	e ^V Req.	Intake Close DCR
Limit [CR]	- 1 /4	32 k - exp	onent	▼ IC	PSI - DOS)H-1116 🗆	Metric	Intake Close PSI

Compression Gauge / Octane Requirement

Calculate Cranking Compression Pressure, Dynamic Compression Ratio, Dynamic Stroke, Cylinder Volume @ Intake Closing, Gas Octane requirements.

Note: All of these functions use Wrist Pin Offset.

- 1) Estimate the Compression Gauge reading (PSIA) and Gas Octane needed from the Compression Ratio, Cylinder Size, Rod Length, Intake Valve Closing Cam Timing, Barometric Pressure, Wrist Pin Offset, and Temperature.
- Estimate the Compression Ratio and gas octane needed from the Compression Gauge Reading (PSIA), Cylinder Size, Rod Length, Intake Valve Closing Cam Timing, Barometric Pressure, Wrist Pin Offset, and Temperature.
- 3) Calculate Compression Ratio from Dynamic Compression Ratio, Stroke, Rod Length, Intake Valve Closing Degrees, and Wrist Pin Offset.
- 4) Estimate the Compression Gauge reading (PSIG) and Gas Octane needed (Some what like DOS Version) from the Compression Ratio, Cylinder Size, Rod Length, Intake Valve Closing Cam Timing, Barometric Pressure, Temperature, Humidity, and Wrist Pin Offset.
- 5) Estimate the Compression Ratio (Just like DOS Version) and gas octane needed from the Compression Gauge Reading (PSIG), Cylinder Size, Rod Length, Intake Valve Closing Cam Timing, Barometric Pressure, Temperature, Humidity, and Wrist Pin Offset.
- 6) Calculate amount of offset required for crank angle, to have the piston to be at TDC. Using Crank Angle, Rod Length, and Stroke.
- 7) **DCR** Graph Dynamic Compression Ratio (Y-axis) against Intake Valve Closing from BDC to TDC (X-Axis). Using Bore, Rod Length, Stroke, Compression Ratio and Wrist Pin Offset.
- 8) **CR** Graph Compression Ratio (Y-axis) against Intake Valve Closing from BDC to 40 BTDC (X-Axis). Using Bore, Rod Length, Stroke, Dynamic Compression Ratio and Wrist Pin Offset.
- CGP/Cam Graph change in Cranking Compression Pressure for change in Intake Valve Closing from BDC to TDC. Using Barometric Pressure, Bore, Rod Length, Stroke, Compression Ratio and Wrist Pin Offset.

- 10)**CGP/BP (PSI)** Graph change in Cranking Compression Pressure for change in Barometric Pressure with a fixed Intake Valve Closing. Using Bore, Rod Length, Stroke, Compression Ratio and Wrist Pin Offset.
- 11)**CGP/BP (In Hg)** Graph change in Cranking Compression Pressure for change in Barometric Pressure with a fixed Intake Valve Closing. Using Bore, Rod Length, Stroke, Compression Ratio and Wrist Pin Offset.
- 12)**IVC/BP (In Hg)** Graph change in Intake Valve Closing for change in Barometric Pressure (In Hg) with a fixed Cranking Compression Pressure. Using Bore, Rod Length, Stroke, Compression Ratio.
- 13)IVC/CR CGP Graph Intake Valve Closing against Compression Ratio with a fixed Cranking Compression Pressure. Using Bore, Rod Length, Stroke, Barometric Pressure (In Hg), Wrist Pin Offset and Cranking Compression Pressure.
- 14)**CGP** Graph change in Cranking Compression Pressure against change Intake Valve Closing against Compression Ratio with a fixed Compression Ratio. Using Bore, Rod Length, Stroke, Barometric Pressure (In Hg), and Wrist Pin Offset.
- 15) **Cylinder Pressure** Graph change in Cylinder Pressure (Decay without anymore burn or any heat loss and no EVO) against Crank Rotational Angle Using Bore, Rod Length, Stroke, Compression Ratio, Crank Angle (Degrees ATDC of Max Cylinder Pressure), Compression Gauge (Max Cylinder Pressure) and Wrist Pin Offset.
- 16) **Piston Pressure** Graph change in Piston Pressure against Crank Rotational Angle Using Bore, Rod Length, Stroke, Compression Ratio, Crank Angle (Degrees ATDC of Max Cylinder Pressure), Compression Gauge (Max Cylinder Pressure) and Wrist Pin Offset.
- 17) **Turning Force** Graph Turning Force against Crank Rotational Angle Using Bore, Rod Length, Stroke, Compression Ratio, Crank Angle (Degrees ATDC of Max Cylinder Pressure), Compression Gauge (Max Cylinder Pressure) and Wrist Pin Offset.
- 18)**CGP VE** Graph change in Cylinder Pressure against change in Volumetric Efficiency. Using Bore, Rod Length, Stroke, Compression Ratio, Barometric Pressure (In Hg).
- 19) Constant T Force Graph change in Cylinder Pressure needed for a Constant Tuning Force.
- 20) Graph First will set up the X-Axis and Y-Axis ranges and Produce a graph based on the selected option.
- 21)Graph +1 will add another Graph line to the present Graph; this will produce good results if the same option is selected.
- 22)Calculate Intake Valve Close ABDC using Bore, Stroke, Rod Length, Compression Ratio, Dynamic CR and Wrist Pin Offset.
- 23)Calculate Intake Valve Close ABDC using Bore, Stroke, Rod Length, Compression Ratio, Barometric Pressure, Temperature, Humidity and Compression Gauge Reading.

Note: Intake Valve Closing is when the valve actually closes. Compression of the air/fuel mixture cannot start until the intake valve is closed Lets take a (ex 1) SBC using 1.5:1 ratio rocker arms. That has a valve lash of .030" for the intake (solid lifters). That means at .020" of cam lift the valve closes. Lets take a (ex 2) BBC using 1.7:1 ratio rocker arms. That has a valve lash of .017" for the intake (solid lifters). That means at .010" of cam lift the valve closes. Add an extra .004 for valve train flex. Using a degree wheel you need to find where the intake lifter measures .014" lifter on the closing ramp. Hydraulic lifters are another deal and preload, spring seat pressure and oil pressure all can come into play, for general use .004 to .006 cam lift is a good starting point. If you change the Intake centerline or valve lash you have to recalculate your dynamic compression ratio. Your Dynamic Compression Ratio (DCR) can never be higher than your Static Compression Ratio (SRC). But in a racing engine your DCR is generally much lower than SCR. Like the SCR, the DCR, is fixed when the engine is built. But unlike the SCR the DCR can change during the operation of the engine. Thing like pushrod flex, and timing belt stretch can alter the cam timing events and that will change your DRC. For street and street/strip motors a DCR in the range of 8-8.5:1 is normal. This should work well with pump gas and yet not have any detonation problems.

I use dynamic compression ratio to calculate cranking pressure. If I have an engine at sea level and than take it up to Denver the DCR does not change. Let's say I have an engine with 7.6:1 DCR and at 70 degrees no humidity and Barometric Pressure of 29.92 it cranks 186.4 psi. Then I change locations and have 25.95 Barometric Pressure it will only crank 161.5 psi.

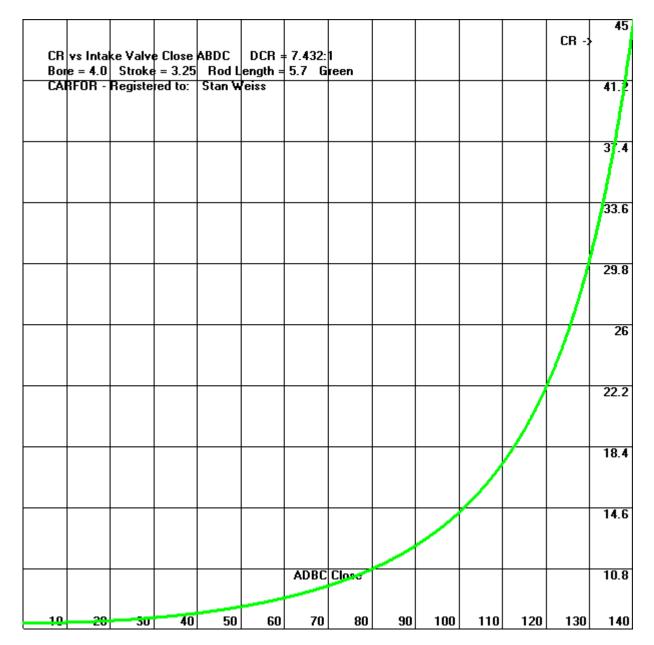
Dynamic compression is the actual physical compression that takes place after the intake valve closes and this generates the cranking pressure. **NOTE** - this is all happening at starter motor RPM's

Roughly this is how I do it.

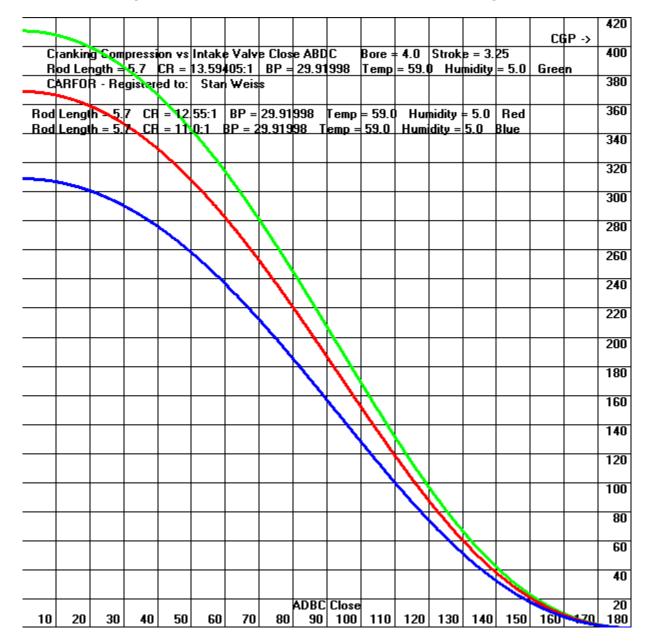
1) Calculate displacement of one cylinder

2) From CR and displacement of one cylinder #1 above I calculate volume above piston at TDC

3) From IVC I calculate piston position and then dynamic stroke


4) From dynamic stroke #3, bore and volume above piston ATDC calculated in #2 I calculate Dynamic compression ratio

5) From Dynamic compression ratio #4 and atmospheric variables I calculate cranking pressure.


Graph Dynamic Compression Ratio (Y-axis) against Intake Valve Closing from BDC to TDC (X-Axis).

	CD			- Cla	- 401										DC	:R ->	14
B	CR vs pre = 4 AREOF	4.0 S	treke	= 3.2	5 Ro	d Leng	gth = 5 s	i.7 C	R = 13	.5940	5:1 (àreen					13
	2 = 4.0 2 = 4.0																12
																	11
																	10
																	9
																	8
																	7
																	6
																	5
																	4
																	3
																	2
10	20	30	40	50	60	70			Close 100		120	130	140	150	160	170	1 180

Graph Compression Ratio (Y-axis) against Intake Valve Closing from BDC to 40 BTDC (X-Axis) for a fixed Dynamic Compression Ratio.

Graph Compression Gauge Pressure - CGP (Y-axis) against Intake Valve Closing from BDC to TDC (X-Axis).

Graph Compression Gauge Pressure - CGP (Y-axis) against BP (X-Axis).

											CGP	250
Crar	nking Co	mpressio	n vs Int	ake Valv	e Close	ABDC	IVC = 9	15.5				240
Bore) = 4.0 FOR - R	Stroke legistere	= 3.25 d to: S	Rod L tan Weis	ength = :s	5.7 C	R = 13.5	9405:1				230
												220
												210
												200
												190
												180
												170
												160
												150
												140
												130
												120
												110
	-											100
												90
												80
												70
												60
												50
												40
												30
					Bar	o Press	PSI					20
8	9	10	11	12	13			16	17	18	19	10 20

Graph Compression Ratio (X-axis) against Intake Valve Closing (Y-Axis) for a mixed CGP


										<i>I</i>			25
											///	/ g R /}	
					take Va								24
	e = 4.0		ce = 3.4		d Lengt	h = 5.7	CGP	= 150.0					
CAI	RFOR -	Registe	red to:	Stan W	eiss					Π	///		23
Bore =	= 4 .0	Stroke	= 3.48	Rod L	ength =	5.7	CGP = 1	75.0	Red	\mathbf{T}			22
Bore =		Stroke			ength =		CGP = 2		Blue	///			
Bore =		Stroke			ength =		CGP = 2	1	iyan 🏅	\square	11		21
Bore =		Stroke			ength =		CGP = 2		Hagen/a			1	
Bore =		Stroke			ength =		CGP = 2		Dark f in				20
Bore =	= 4 .0	Stroke	= 3.48	Rod L	ength =	5.7	CGP = 3	300.0 I	Dark Re	d//	///	/	
										Π	\square		19
									11	77	11		18
								1		77			17
										11	7		16
									//	11			15
									//	\frown			14
								/		/			13
													12
													11
_													10
													9
													8
			_										7
						IVC -	BDC						6
10	20	30	40	50	60	70	80	90	100	110	120	130	140

	-																300
															CF	iР->	500
l c	rankin	a Con	nressi	on vs	Intak	Valv	e Clos	e ABD	С	Rore :	40	Strok	e = 3	25		ľ	
	odle	nath =	57	CB =	10 75	1 BF	= 29	91998	3 Ten	n = 5	9 N F	lumidi	tv = 5	0 6	een		280
			gister					0.000		- u			19 - U	1 .			
			giotor	<u> </u>	0.0		ľ										
Bod	l engl	h = 5	Z CB	= 10	1.1	BP = 2	9 919	98 T	emp =	59 N	Hum	ditu =	5.0	Bed			260
									mp = !								
									mp =								240
Bod	leng	h = 5	CB	= 8		P = 29	9199	8 Te	mp =	59 N	Humid	litu = !		agen	a		240
Bod	Leng	h = 5	Z CB	= 7.2		BP = 2	9 919	98 T	emp =	59.0	Hum	iditu =	5.0	Dark	Green		
	Lengl		Z CB	= 6 !	1 8	P = 29	9199	8 Te	mp = !	59.0	Humic	litv = !		ark R	ed		220
	20119								[p		[[
	1																200
																	100
								N									180
\vdash								\mathbf{X}					<u> </u>				160
																	100
		-						\land									
																	140
									\mathbf{N}								
										\mathbf{N}							120
										\mathbf{N}							
										44							100
											N						100
									\sim		N						
																	80
												K .					
												N					
																	60
													<u>\</u>				
																	40
			<u> </u>					ADBC	Close			<u> </u>			<u> </u>		20
									0030								20
10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	<u> 70</u>	180

Graph shows **Cylinder Pressure Drop (Y-axis)** from piston travel with no heat loss or EVO. Peak pressure is at 10 ATDC the green line has 1100 PSI and 13.5:1 CR. The red line has 1000 PSI and 10.5:1 CR.

														Cvl	nder I	^o ressu	re ->	1100
C	vlind	ler	Pres	sure v	s Crar	k Rot	ation /	Anale										1050
						25			= 5 7	CB	= 13 !	5						
C	R	OF	l - Re	gister	ed to:	Star	i Weis	s										1000
Bore	Ţ	LQ	Stre	ke =∶	3.25	Rod L	ength	= 5.7	CR =	= 10.5	:1 R	ed						950
	١	V																900
		ľ																850
																		80
		╡	∖															75
		╡	\uparrow															70
		┥	-1															65
		╡																60
		┥																55
		┥																50
		╡																45
		┥			ľ													40
		┥																35
		+																30
		+																25
		+																20
		+									-							15
		+																10
10	- 1	20	30	40	50	60	70	D 80	egrees on	- ATE	C 110	120	120	140	150	160	170	5

														Ти	ning Fe	NCE ->	823
Cy	linder f	Pressur	e vs Ci	rank R	otation	Angle								14		лсе -/	781
Ba	re = 4.	D Stro	ke = 3.	25 R	od = 5.1	7 CR =	13.5:1	Max F	ressure	e = 110	0.0@	10 ATI)C - k-	ехр = 1	3 Offs	et = 0.1	þ
CA	RFOR	- Regi	tered	to: S	tan We	iss											740.7
Bore	= 4.0	Stroke	= 3.25	Rod	= 5.7	CR = 10	0.5:1	Max Pre	ssure =	= 950.0	@ 10	ATDC	к-ехр	= 1.3	Offset =	= 0.0 F	689.5
																	658.4
																	617.2
	1																576 .1
	1																534.9
	T																493.0
	1																452.0
	1																411.
																	370.3
					\land												329.2
																	28
																	246.9
																	205.7
																	164.0
																	123.4
											-						82.3
10	20	30	40	50	0 60) 70		egrees 90	- ATD 100	2 110	120	130	140	150	160	178	41.1! 18

Graph Cylinder Pressure - CGP (Y-axis) against VE (X-Axis).

t / MPH / Ho		Calculator									
-Vehicle Detai	ils ——					•					
1/4 Mile ET	7.105	1/4 Speed	192.453	Horsepower	555.0	60 Foot	2.287	2.141	2.056		
1/8 Mile ET	4.554	1/8 Speed	156.466	RPM	6500		0.0	0.0	0.0		
Vehicle Weight plus	2350.0	Hook Factor	1320.0	BMEP	0.0	330 Foot	6.341	5.976	5.845		
% Converter				Hereenewer			0.0	0.0	0.0		
Slippage	3.25	Type Curve	2	Horsepower Increase	0.0	1/8 Mile E	T 9.658	9.322	9.043		
Engine Size	326.7256			Torque	444.0		0.0	0.0	0.0		
-		HP-ci		T	0.0	1000 Foot	12.506	12.175	11.801		
			0.0	Torque - ci			0.0	0.0	0.0		
- 60 Foot ——		HP - liter	0.0	Torque -	0.0	1/4 Mile E	T 14.864	14.534	14.122		
60 Ft Time	1.1133	60 Ft MPH	73.4916	60 Ft G's	1.234	Peak HP	131.04	125.88	136.88		
			60 F	Ft G's 3.11.0	1.234	Average	98.95	100.50	106.30		
<u>E</u> T		<u>M</u> PH	1	/4 E <u>T</u>	BMEP -	HP	<u>G</u> en Digital H	P	Quit		
ET <u>H</u> P		MPH H <u>P</u>	1	/ <u>8</u> ET	BMEP - T	orgue	Conv HP - <u>T</u> ore	que 1/4 9	1/4 Split Times		
IMPH 33		1/ <u>4</u> ET 33	<u>C</u> MF	PH HP 33	<u>a</u> MPH H	IP 33	Conv Torgue -	HP			
ET/MPH <u>6</u> 6 HF	ET	/MPH <u>3</u> 3 HP	6 <u>0</u> F	oot Time	60 F <u>o</u> ot I	MPH 60 Foot					
CARFOF		Acceleration Chart File	⊢ Auti Trai	omatic ns	☐ Metric						

ET/MPH/HP

If the Automatic Trans box is checked the MPH numbers will be adjusted based on the % converter slippage. The % converter slippage is calculated on the GEAR screen.

- 1) Estimate 1/8 & 1/4 Mile ET from Vehicle Weight and Horsepower.
- 2) Estimate 1/8 & 1/4 Mile MPH from Vehicle Weight and Horsepower.
- 3) Estimate 1/4 Mile ET from 1/4 Mile MPH.
- 4) Estimate 1/4 Mile Horsepower requirement from ET and Vehicle Weight.
- 5) Estimate 1/4 Mile Horsepower requirement from MPH and Vehicle Weight.
- 6) Estimate 1/8 Mile ET from 1/8 Mile MPH.
- 7) Convert Horsepower to Torque with RPM.
- 8) Convert Torque with RPM to Horsepower.
- 9) Calculate BMEP, Torque per Cubic Inch, and Torque per Liter from Torque and Cubic Inches.
- 10)Calculate BMEP from Horsepower, Cubic Inches and RPM.
- 11)Estimate 1/4 Mile MPH from Vehicle Weight and Horsepower for 33 foot Trap Speed.
- 12)Estimate 1/4 Mile ET from 1/4 Mile MPH for 33 foot Trap Speed.
- 13)Estimate 1/4 Mile Horsepower requirement from MPH 33 foot Trap Speed.
- 14)Estimate 1/4 Mile Horsepower increase required to increase MPH by one 33 foot Trap Speed.
- 15)Generate Generic Digital Horsepower Curve using Horsepower, RPM, Engine Size and Type Curve maybe 1 of 11 different curves. The user selects different curve types to find which one best matches his engine. You can also have the program write this data to a file for use with the Acceleration and Top Speed Calculator (Check the Acceleration Chart File box). Type Curve 10 and 11 uses Peak Torque in place of Horsepower. 10 This is based on a high flat torque curve type engine. 11 This is based on a turbo charged or Diesel engine.
- 16) Estimate 1/4 Mile Horsepower requirement from ET and MPH 66 foot Trap Speed.
- 17)Estimate 1/4 Mile Horsepower requirement from ET and MPH 33 foot Trap Speed.

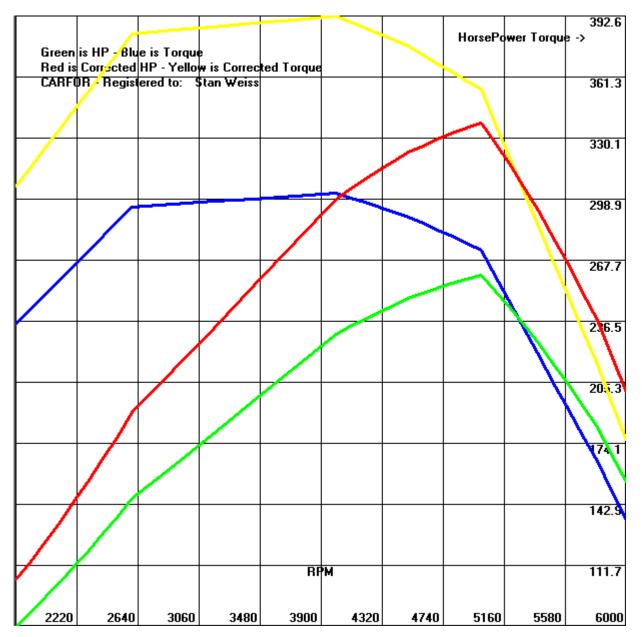
- 18)Calculate Split times for up to 3 different runs. This lets you break the run down into 4 different time slices and see how each slice compares to the other runs.
- 19)Estimate 60 Foot Time form 1/4 ET.
- 20) Estimate 60 Foot MPH from 60-Foot Time.
- 21) Estimate Average Rate of Acceleration from Rest to 60 Foot using 60 Foot Time.
 - a. This calculation assumes a constant rate of Acceleration.

Note: The 33 Trap speed Calculations are for today's tracks where the speed trap stops at the end of the ¹/₄ mile, whereas the 66-trap speed can be used for much older MPH you may have or have gotten from old magazine articles.

Blower / Turbo	Details –							HP from BP
Pressure	0.0	HP Increase Crank Gear	0.0	Horsepowe	000.0	Comp Ratio	13.59405	BP from HP
Blower Gear Footh Count	22	Tooth Count or Diameter	35	Blower Driv Ratio	/e 1.0	Max. CR	9.5	HP from BP
	6500	Blower RPM	6500	Pressure R	atio 0.0	Effective CR Compressed	0.0	Effective CR
Barometric Pressure	29.92	Temperature	59.0	Blower Efficiency	.75	Air Temp (Outlet)	175.5	Max CR
Density Ratio	0.0	Engine Size	326.7256	Volumetric Efficiency	0.85	Compressor Inlet Flow CFM	0.0	BP <- Effect. CR
Number of	1			BSAC	6.1	System Density Ratio	0.0	Drive Ratio/RPM
ntercooler <u></u>						_		Crank Gear
Efficiency	0.0	Inlet Temperature	175.5	Outet Temperati	ure 82.5			Blower Gear
Density Ratio	0.0	Pressure	1.5	(Flow Ma	o Units		
Add / Change B Old Density Ratio	lower -	New Density Ratio	1.39	⊙ CFM Olbs/n	O lbs / min O	om^3/min Cm² /s Ckg/hr C		
Graph X Max	0.0	Graph Y Max	0.0	O HP - I	os / min			<u>Q</u> uit
RPM Step	-	Max RPM	14000	Rotar	y / 2-Stroke Eng	ines 🗌 Graph R	esults	🗌 Metric
Pressure Ratio		ercooler ficiency	IC Density R	latio	Outlet Temp	Comp. Air Temp	Blow Dens	sity Ratio
Compr Inlet Flow	UD Free	n Add / Chg	Air Flow Map	DD Air	Flow Map - BR	Air How	Sustem D	ensity Ratio

BLOWERS

- 1) Estimate Horsepower (Increase) from adding blower pressure.
- 2) Estimate Blower Pressure needed from engine Horsepower and Horsepower increase wanted.
- 3) Estimate Original (Normal) Horsepower from Horsepower and Blower Pressure.
- 4) Estimate Effective Compression Ratio from Compression Ratio and blower Pressure.
- 5) Estimate Max Compression Ratio with Blower Pressure from normal (unblown) Max Compression Ratio Running the same fuel.
- 6) Estimate Blower Pressure needed from Effective Compression Ratio wanted and Compression Ratio.
- 7) Calculate Blower Drive Ratio and Blower RPM from RPM, Blower Gear and Crank Gear Tooth count.
- 8) Calculate Crank Gear from Blower RPM, RPM, and Blower Gear Tooth count.
- 9) Calculate Blower Gear from Blower RPM, RPM, and Crank Gear Tooth count.
- 10)Calculate Pressure Ratio from Blower Pressure and Barometric Pressure.
- 11)Calculate Intercooler Efficiency from Blower Outlet / Intercooler Inlet Temperature, Intercooler Outlet Temperature and Air Temperature.
- 12)Calculate Intercooler Density Ratio from Blower Pressure, Barometric Pressure, Intercooler Inlet Temperature, Intercooler Outlet Temperature, and Intercooler Pressure Loss.
- 13)Estimate Compressed Air Temperature from Pressure Ratio, Temperature, and Blower Efficiency.
- 14)Calculate Blower Density Ratio from Blower Pressure, Barometric Pressure, Blower Inlet Temperature, and Blower Outlet Temperature.
- 15)Calculate Compressor Inlet Flow in CFM. Using Engine Size, Rpm, Volumetric Efficiency, Blower Density Ratio, and Number of Turbos.


16) Graph HP and Torque also New HP and Torque. Using Old and New Density Ratio's.

- 17)Generate Blower / Turbo Flow Map Driven by Pressure Ratio using Engine Size and Volumetric Efficiency.
- 18)Generate Blower / Turbo Flow Map Driven by Boost Pressure and Density Ratio using Engine Size, Volumetric Efficiency, Temperature, Blower Efficiency and Barometric Pressure.
- 19)Generate Blower / Turbo Flow Map Driven by Boost Pressure and Density Ratio using Engine Size, Volumetric Efficiency, Temperature, Blower Efficiency, Barometric Pressure, Intercooler Outlet Temperature, and Intercooler Pressure Loss.
- 20)Calculate Intercooler Outlet Temperature from Intercooler Efficiency, Blower Outlet / Intercooler Inlet Temperature, and Air Temperature.
- 21)Calculate System Density Ratio from Intercooler Density Ratio and Blower Density Ratio.

NOTE: Use compressor maps to find the turbo(s) best suited to the airflow (CFM) and pressure ratios.

Notes: When adding a Blower to a Naturally Aspirated engine use an Old Density Ratio of 1. This uses a constant Density Ratio, which will not be true in real testing.

Graph HP and Torque (Y-Axis) also New HP and Torque. Using Old and New Density Ratio's. RPM (X-axis).

Generate **Blower / Turbo Flow Map** Driven by Boost Pressure and Density Ratio using Engine Size, Volumetric Efficiency, Temperature, Blower Efficiency and Barometric Pressure.

Engine Size = 280.865 Type Engine = 4-Stroke Volumetric Efficiency = .850 Number of Turbos = 1 Units for Output Flow = CFM

I	Boost	Press	ure		RP	м	Flow	per Tu	rbo				
PSI	BARS F	Ratio	1000	1500	2000	2500	3000	3500	4000	4500	5000	5500	6000
.000	.000	1.0	69.1	103.6	138.2	172.7	207.2	241.8	276.3	310.9	345.4	379.9	414.5
1.470	.101	1.1	76.0	114.0	152.0	190.0	228.0	266.0	303.9	341.9	379.9	417.9	455.9
2.939	.203	1.2	82.9	124.3	165.8	207.2	248.7	290.1	331.6	373.0	414.5	455.9	497.4
4.409	.304	1.3	89.8	134.7	179.6	224.5	269.4	314.3	359.2	404.1	449.0	493.9	538.8
5.878	.405	1.4	96.7	145.1	193.4	241.8	290.1	338.5	386.8	435.2	483.5	531.9	580.3
7.348	.507	1.5	103.6	155.4	207.2	259.0	310.9	362.7	414.5	466.3	518.1	569.9	621.7
8.818	.608	1.6	110.5	165.8	221.1	276.3	331.6	386.8	442.1	497.4	552.6	607.9	663.2
10.287	.709	1.7	117.4	176.1	234.9	293.6	352.3	411.0	469.7	528.4	587.2	645.9	704.6
11.757	.811	1.8	124.3	186.5	248.7	310.9	373.0	435.2	497.4	559.5	621.7	683.9	746.0
13.226	.912	1.9	131.2	196.9	262.5	328.1	393.7	459.4	525.0	590.6	656.2	721.9	787.5
14.696	1.013	2.0	138.2	207.2	276.3	345.4	414.5	483.5	552.6	621.7	690.8	759.9	828.9
16.166	1.115	2.1	145.1	217.6	290.1	362.7	435.2	507.7	580.3	652.8	725.3	797.9	870.4
17.635	1.216	2.2	152.0	228.0	303.9	379.9	455.9	531.9	607.9	683.9	759.9	835.8	911.8
19.105	1.317	2.3	158.9	238.3	317.8	397.2	476.6	556.1	635.5	715.0	794.4	873.8	953.3
20.574	1.419	2.4	165.8	248.7	331.6	414.5	497.4	580.3	663.2	746.0	828.9	911.8	994.7
22.044	1.520	2.5	172.7	259.0	345.4	431.7	518.1	604.4	690.8	777.1	863.5	949.8	1036.2
23.514	1.621	2.6	179.6	269.4	359.2	449.0	538.8	628.6	718.4	808.2	898.0	987.8	1077.6
24.983	1.723	2.7	186.5	279.8	373.0	466.3	559.5	652.8	746.0	839.3	932.6	1025.8	1119.1
26.453	1.824	2.8	193.4	290.1	386.8	483.5	580.3	677.0	773.7	870.4	967.1	1063.8	1160.5
27.922	1.925	2.9	200.3	300.5	400.7	500.8	601.0	701.1	801.3	901.5	1001.6	1101.8	1202.0
29.392	2.027	3.0	207.2	310.9	414.5	518.1	621.7	725.3	828.9	932.6	1036.2	1139.8	1243.4
30.862	2.128	3.1	214.1	321.2	428.3	535.4	642.4	749.5	856.6	963.6	1070.7	1177.8	1284.9
32.331	2.229	3.2	221.1	331.6	442.1	552.6	663.2	773.7	884.2	994.7	1105.3	1215.8	1326.3
33.801	2.330	3.3	228.0	341.9	455.9	569.9	683.9	797.9	911.8	1025.8	1139.8	1253.8	1367.8
35.270	2.432	3.4	234.9	352.3	469.7	587.2	704.6	822.0	939.5	1056.9	1174.3	1291.8	1409.2
36.740	2.533	3.5	241.8	362.7	483.5	604.4	725.3	846.2	967.1	1088.0	1208.9	1329.8	1450.6
38.210	2.634	3.6	248.7	373.0	497.4	621.7	746.0	870.4	994.7	1119.1	1243.4	1367.8	1492.1
39.679	2.736	3.7	255.6	383.4	511.2	639.0	766.8	894.6	1022.4	1150.2	1277.9	1405.7	1533.5
41.149	2.837	3.8	262.5	393.7	525.0	656.2	787.5				1312.5		
42.618		3.9	269.4	404.1	538.8	673.5	808.2	942.9	1077.6	1212.3	1347.0	1481.7	1616.4
44.088	3.040	4.0	276.3	414.5	552.6	690.8	828.9	967.1	1105.3	1243.4	1381.6	1519.7	1657.9
45.558	3.141	4.1	283.2	424.8	566.4	708.1	849.7	991.3	1132.9	1274.5	1416.1	1557.7	1699.3
47.027	3.242	4.2	290.1	435.2	580.3	725.3	870.4	1015.5	1160.5	1305.6	1450.6	1595.7	1740.8
48.497	3.344	4.3	297.0	445.6	594.1	742.6	891.1	1039.6	1188.1	1336.7	1485.2	1633.7	1782.2
49.966	3.445	4.4	303.9	455.9	607.9	759.9	911.8	1063.8	1215.8	1367.8	1519.7	1671.7	1823.7
51.436	3.546	4.5	310.9	466.3	621.7	777.1	932.6	1088.0	1243.4	1398.8	1554.3	1709.7	1865.1
52.906	3.648	4.6	317.8	476.6	635.5	794.4	953.3	1112.2	1271.0	1429.9	1588.8	1747.7	1906.6
54.375	3.749	4.7	324.7	487.0	649.3	811.7	974.0	1136.3	1298.7	1461.0	1623.3	1785.7	1948.0
55.845	3.850	4.8	331.6	497.4	663.2	828.9					1657.9		
57.314		4.9	338.5	507.7	677.0	846.2	1015.5	1184.7	1353.9	1523.2	1692.4	1861.7	2030.9
58.784	4.053	5.0	345.4	518.1	690.8	863.5	1036.2	1208.9	1381.6	1554.3	1727.0	1899.7	2072.4
PSI	BARS F	Ratio	1000	1500	2000	2500	3000	3500	4000	4500	5000	5500	6000

_ Volume	etric Efficier	icy - RPM	v is Table —				
1000	0.89	8000	0.74	15000	0.65	21500	0.65
1500	0.90	8500	0.73	15500	0.65	22000	0.65
2000	0.91	9000	0.73	16000	0.65	22500	0.65
2500	0.92	9500	0.72	16500	0.65	23000	0.65
3000	0.93	10000	0.72	17000	0.65	23500	0.65
3500	0.915	10500	0.71	17500	0.65	24000	0.65
4000	0.90	11000	0.71	18000	0.65	24500	0.65
4500	0.885	11500	0.70	18500	0.65	25000	0.65
5000	0.87	12000	0.69	19000	0.65	25500	0.65
5500	0.84	12500	0.68	19500	0.65	26000	0.65
6000	0.81	13000	0.67	20000	0.65	26500	0.65
6500	0.79	13500	0.66	20500	0.65	27000	0.65
7000	0.79	14000	0.65	21000	0.65	27500	0.65
7500	0.755	14500	0.65		Res	et	Done

Engine Size = 280.865 Type Engine = 4-Stroke Volumetric Efficiency = .850 Number of Turbos = 1 Units for Output Flow = CFM

Вос	ost Pr	essur	e		RPM		Flow pe	r Turbo	>				
PSI	BARS R	atio	1000	1500	2000	2500	3000	3500	4000	4500	5000	5500	6000
.000	.000	1.0	72.3	109.7	147.9	186.9	226.7	260.3	292.6	323.7	353.5	375.5	395.0
1.470	.101	1.1	79.6	120.7	162.7	205.6	249.4	286.3	321.8	356.0	388.9	413.0	434.5
2.939	.203	1.2	86.8	131.7	177.5	224.3	272.1	312.3	351.1	388.4	424.2	450.6	474.0
4.409	.304	1.3	94.0	142.6	192.3	243.0	294.8	338.3	380.3	420.7	459.6	488.1	513.5
5.878	.405	1.4	101.3	153.6	207.1	261.7	317.4	364.4	409.6	453.1	494.9	525.6	553.0
7.348	.507	1.5	108.5	164.6	221.9	280.4	340.1	390.4	438.9	485.5	530.3	563.2	592.4
8.818	.608	1.6	115.7	175.5	236.7	299.1	362.8	416.4	468.1	517.8	565.6	600.7	631.9
10.287	.709	1.7	123.0	186.5	251.4	317.8	385.5	442.4	497.4	550.2	601.0	638.3	671.4
11.757	.811	1.8	130.2	197.5	266.2	336.5	408.1	468.5	526.6	582.6	636.3	675.8	710.9
13.226	.912	1.9	137.4	208.5	281.0	355.1	430.8	494.5	555.9	614.9	671.7	713.4	750.4
14.696	1.013	2.0	144.7	219.4	295.8	373.8	453.5	520.5	585.1	647.3	707.0	750.9	789.9
16.166	1.115	2.1	151.9	230.4	310.6	392.5	476.2	546.6	614.4	679.7	742.4	788.5	829.4
17.635	1.216	2.2	159.1	241.4	325.4	411.2	498.8	572.6	643.6	712.0	777.7	826.0	868.9
19.105	1.317	2.3	166.4	252.3	340.2	429.9	521.5	598.6	672.9	744.4	813.1	863.6	908.4
20.574	1.419	2.4	173.6	263.3	355.0	448.6	544.2	624.6	702.2	776.8	848.4	901.1	947.9
22.044	1.520	2.5	180.8	274.3	369.8	467.3	566.8	650.7	731.4	809.1	883.8	938.7	987.4
23.514	1.621	2.6	188.1	285.3	384.6	486.0	589.5	676.7	760.7	841.5	919.1	976.2	1026.9
24.983	1.723	2.7	195.3	296.2	399.4	504.7	612.2	702.7	789.9	873.9	954.5	1013.7	1066.4
26.453	1.824	2.8	202.5	307.2	414.1	523.4	634.9	728.7	819.2	906.2	989.9	1051.3	1105.9
27.922	1.925	2.9	209.8	318.2	428.9	542.1	657.5	754.8	848.4	938.6	1025.2	1088.8	1145.4
29.392	2.027	3.0	217.0	329.1	443.7	560.8	680.2	780.8	877.7	971.0	1060.6	1126.4	1184.9
30.862	2.128	3.1	224.2	340.1	458.5	579.4	702.9	806.8	907.0	1003.3	1095.9	1163.9	1224.4
32.331	2.229	3.2	231.5	351.1	473.3	598.1	725.6	832.8	936.2	1035.7	1131.3	1201.5	1263.9
33.801	2.330	3.3	238.7	362.1	488.1	616.8	748.2	858.9	965.5	1068.1	1166.6	1239.0	1303.4
35.270	2.432	3.4	245.9	373.0	502.9	635.5	770.9	884.9	994.7	1100.4	1202.0	1276.6	1342.9
36.740	2.533	3.5	253.2	384.0	517.7	654.2	793.6	910.9	1024.0	1132.8	1237.3	1314.1	1382.4
38.210	2.634	3.6	260.4	395.0	532.5	672.9	816.3	936.9	1053.2	1165.1	1272.7	1351.7	1421.9
39.679	2.736	3.7	267.6	405.9	547.3	691.6	838.9	963.0	1082.5	1197.5	1308.0	1389.2	1461.4
41.149	2.837	3.8	274.9	416.9	562.1	710.3	861.6	989.0	1111.8	1229.9	1343.4	1426.8	1500.9
PSI	BARS R	atio	1000	1500	2000	2500	3000	3500	4000	4500	5000	5500	6000
Boo	ost Pr	essur	e		RPM		Flow pe	r Turbo	b				

Engine Size = 280.865 Type Engine = 4-Stroke Volumetric Efficiency = .850 Number of Turbos = 1 Units for Output Flow = lbs/min -- Raised Temperature

Во	ost Pr	essur	e		RPM		Flow pe	r Turbo					
PSI	BARS R	atio	1000	1500	2000	2500	3000	3500	4000	4500	5000	5500	6000
.000	.000	1.0	4.77	7.15	9.53	11.92	14.30	16.68	19.07	21.45	23.83	26.22	28.60
1.470	.101	1.1	5.24	7.86	10.49	13.11	15.73	18.35	20.97	23.59	26.22	28.84	31.46
2.939	.203	1.2	5.72	8.58	11.44	14.30	17.16	20.02	22.88	25.74	28.60	31.46	34.32
4.409	.304	1.3	6.20	9.29	12.39	15.49	18.59	21.69	24.79	27.88	30.98	34.08	37.18
5.878	.405	1.4	6.67	10.01	13.35	16.68	20.02	23.36	26.69	30.03	33.36	36.70	40.04
7.348	.507	1.5	7.15	10.72	14.30	17.87	21.45	25.02	28.60	32.17	35.75	39.32	42.90
8.818	.608	1.6	7.63	11.44	15.25	19.07	22.88	26.69	30.51	34.32	38.13	41.94	45.76
10.287	.709	1.7	8.10	12.15	16.21	20.26	24.31	28.36	32.41	36.46	40.51	44.57	48.62
11.757	.811	1.8	8.58	12.87	17.16	21.45	25.74	30.03	34.32	38.61	42.90	47.19	51.48
13.226	.912	1.9	9.06	13.58	18.11	22.64	27.17	31.70	36.22	40.75	45.28	49.81	54.34
14.696	1.013	2.0	9.53	14.30	19.07	23.83	28.60	33.36	38.13	42.90	47.66	52.43	57.20
16.166	1.115	2.1	10.01	15.01	20.02	25.02	30.03	35.03	40.04	45.04	50.05	55.05	60.06
17.635	1.216	2.2	10.49	15.73	20.97	26.22	31.46	36.70	41.94	47.19	52.43	57.67	62.92
19.105	1.317	2.3	10.96	16.44	21.93	27.41	32.89	38.37	43.85	49.33	54.81	60.30	65.78
20.574	1.419	2.4	11.44	17.16	22.88	28.60	34.32	40.04	45.76	51.48	57.20	62.92	68.64
22.044	1.520	2.5	11.92	17.87	23.83	29.79	35.75	41.71	47.66	53.62	59.58	65.54	71.50
23.514	1.621	2.6	12.39	18.59	24.79	30.98	37.18	43.37	49.57	55.77	61.96	68.16	74.36
24.983	1.723	2.7	12.87	19.30	25.74	32.17	38.61	45.04	51.48	57.91	64.35	70.78	77.22
26.453	1.824	2.8	13.35	20.02	26.69	33.36	40.04	46.71	53.38	60.06	66.73	73.40	80.08
27.922	1.925	2.9	13.82	20.73	27.65	34.56	41.47	48.38	55.29	62.20	69.11	76.02	82.94
29.392	2.027	3.0	14.30	21.45	28.60	35.75	42.90	50.05	57.20	64.35	71.50	78.65	85.80
30.862	2.128	3.1	14.78	22.16	29.55	36.94	44.33	51.72	59.10	66.49	73.88	81.27	88.66
32.331	2.229	3.2	15.25	22.88	30.51	38.13	45.76	53.38	61.01	68.64	76.26	83.89	91.52
33.801	2.330	3.3	15.73	23.59	31.46	39.32	47.19	55.05	62.92	70.78	78.65	86.51	94.37
35.270	2.432	3.4	16.21	24.31	32.41	40.51	48.62	56.72	64.82	72.93	81.03	89.13	97.23

Engine Size = 280.865 Type Engine = 4-Stroke Volumetric Efficiency = .850 Number of Turbos = 1 Units for Output Flow = m^3/min

Вос	ost Pr	essur	e		RPM		Flow pe	er Turbo	5				
PSI	BARS R	atio	1000	1500	2000	2500	3000	3500	4000	4500	5000	5500	6000
.000	.000	1.0	1.956	2.934	3.912	4.890	5.868	6.846	7.824	8.802	9.780	10.758	11.736
1.470	.101	1.1	2.152	3.228	4.303	5.379	6.455	7.531	8.607	9.683	10.758	11.834	12.910
2.939	.203	1.2	2.347	3.521	4.695	5.868	7.042	8.216	9.389	10.563	11.736	12.910	14.084
4.409	.304	1.3	2.543	3.814	5.086	6.357	7.629	8.900	10.172	11.443	12.715	13.986	15.257
5.878	.405	1.4	2.739	4.108	5.477	6.846	8.216	9.585	10.954	12.323	13.693	15.062	16.431
7.348	.507	1.5	2.934	4.401	5.868	7.335	8.802	10.269	11.736	13.204	14.671	16.138	17.605
8.818	.608	1.6	3.130	4.695	6.259	7.824	9.389	10.954	12.519	14.084	15.649	17.214	18.778
10.287	.709	1.7	3.325	4.988	6.651	8.313	9.976	11.639	13.301	14.964	16.627	18.289	19.952
11.757	.811	1.8	3.521	5.281	7.042	8.802	10.563	12.323	14.084	15.844	17.605	19.365	21.126
13.226	.912	1.9	3.717	5.575	7.433	9.291	11.150	13.008	14.866	16.724	18.583	20.441	22.299
14.696	1.013	2.0	3.912	5.868	7.824	9.780	11.736	13.693	15.649	17.605	19.561	21.517	23.473
16.166	1.115	2.1	4.108	6.162	8.216	10.269	12.323	14.377	16.431	18.485	20.539	22.593	24.647
17.635	1.216	2.2	4.303	6.455	8.607	10.758	12.910	15.062	17.214	19.365	21.517	23.669	25.820
19.105	1.317	2.3	4.499	6.748	8.998	11.247	13.497	15.746	17.996	20.245	22.495	24.744	26.994
20.574	1.419	2.4	4.695	7.042	9.389	11.736	14.084	16.431	18.778	21.126	23.473	25.820	28.168
22.044	1.520	2.5	4.890	7.335	9.780	12.225	14.671	17.116	19.561	22.006	24.451	26.896	29.341
23.514	1.621	2.6	5.086	7.629	10.172	12.715	15.257	17.800	20.343	22.886	25.429	27.972	30.515
24.983	1.723	2.7	5.281	7.922	10.563	13.204	15.844	18.485	21.126	23.766	26.407	29.048	31.688
26.453	1.824	2.8	5.477	8.216	10.954	13.693	16.431	19.170	21.908	24.647	27.385	30.124	32.862
27.922	1.925	2.9	5.673	8.509	11.345	14.182	17.018	19.854	22.691	25.527	28.363	31.199	34.036
29.392	2.027	3.0	5.868	8.802	11.736	14.671	17.605	20.539	23.473	26.407	29.341	32.275	35.209
30.862	2.128	3.1	6.064	9.096	12.128	15.160	18.192	21.223	24.255	27.287	30.319	33.351	36.383
32.331	2.229	3.2	6.259	9.389	12.519	15.649	18.778	21.908	25.038	28.168	31.297	34.427	37.557
33.801	2.330	3.3	6.455	9.683	12.910	16.138	19.365	22.593	25.820	29.048	32.275	35.503	38.730
35.270	2.432	3.4	6.651	9.976	13.301	16.627	19.952	23.277	26.603	29.928	33.253	36.579	39.904

Generate **Blower / Turbo Flow Map** Driven by Boost Pressure and Density Ratio using Engine Size, Volumetric Efficiency, Temperature, Blower Efficiency and Barometric Pressure.

```
Engine Size = 280.865 Type Engine = 4-Stroke
Volumetric Efficiency = .850 Blower Efficiency = .750
Number of Turbos = 1
Units for Output Flow = CFM
```

Boost Pressure Output Blower Air RPM Retu Turbo PSI BARS Ratio Temp Ratio Density 1000 1500 2000 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500 3500 3000 3500 4000 4500 3600 3500 3600 3500 3600 3500 3600 3500 3600 3500 3600 3500 3600 3500 3600 3500 3600 3500 3600 3500 3600 3500 3600 3500 4600 411 3600 3600 3500 3600 4500 411 3600 3500 3600 3500 411 3600 411 3600 3500 3610 411 411 4400 4600 7231.4 2601 327.5 362.1 377.5 431.4 475.1 360.1 352.7 431.4 475.1 361.6 367.5 381.4 402.2 475.0 531.1 371.2 461.					_	_		
2.00 .138 1.1361 84.4 1.0810 0.0713 7.4 112.2 149.6 187.0 224.2 21.0 23.0 32.0 </td <td>Boost Pressure Output Blower Air</td> <td></td> <td></td> <td>RPM</td> <td>-</td> <td></td> <td></td> <td></td>	Boost Pressure Output Blower Air			RPM	-			
$ \begin{array}{c} 3.00 & .207 & 1.2041 & 96.35 & 1.1233 & 0.07137 & 77.6 & 116.4 & 155.2 & 194.0 & 22.8 & 271.6 & 310.4 & 349.2 & 388.0 \\ 4.00 & .276 & 1.2722 & 107.79 & 1.1629 & 0.06948 & 83.0 & 124.5 & 166.0 & 207.5 & 249.1 & 290.6 & 322.1 & 373.6 & 415.1 \\ 6.00 & .414 & 1.4083 & 12.90 & 1.2018 & 0.06964 & 83.0 & 124.5 & 166.0 & 207.5 & 249.1 & 290.6 & 322.1 & 373.6 & 415.1 \\ 6.00 & .443 & 1.4763 & 139.65 & 1.2778 & 0.06622 & 88.3 & 132.4 & 176.5 & 220.7 & 264.8 & 308.9 & 346.1 & 836.7 & 542. \\ 9.00 & .621 & 1.6124 & 159.18 & 1.3516 & 0.06413 & 93.4 & 140.0 & 186.7 & 233.4 & 200.1 & 326.8 & 373.5 & 420.1 & 466.8 \\ 10.00 & .669 & 1.6605 & 16.85 & 1.3877 & 0.06318 & 93.4 & 140.0 & 186.7 & 237.4 & 206.3 & 334.1 & 437.3 \\ 11.00 & .758 & 1.7485 & 177.55 & 1.4234 & 0.06228 & 98.3 & 147.5 & 196.7 & 245.8 & 295.0 & 344.1 & 393.4 & 450.4 \\ 12.00 & .827 & 1.8165 & 16.36 & 1.4860 & 0.06134 & 10.08 & 15.11 & 210.5 & 251.9 & 302.3 & 352.7 & 433.0 & 453.4 & 503.8 \\ 13.00 & .896 & 1.8464 & 194.93 & 1.4955 & 0.06563 & 10.32 & 154.8 & 206.3 & 257.9 & 309.5 & 361.1 & 412.7 & 464.3 & 151.8 \\ 14.00 & .965 & 1.9526 & 203.28 & 1.5279 & 0.0587 & 110.2 & 165.3 & 220.5 & 275. & 330.7 & 453.4 & 400.4 & 465.5 & 539.5 \\ 16.00 & 1.103 & 2.0827 & 211.43 & 1.5620 & 0.05797 & 112.5 & 168.8 & 225.1 & 213.3 & 376.4 & 416.6 & 466.4 & 455.4 & 466.7 \\ 18.00 & 1.241 & 2.2486 & 234.74 & 1.6621 & 0.05751 & 117.1 & 175.6 & 234.1 & 292.7 & 351.4 & 400.4 & 455.3 & 516.7 & 574.1 \\ 19.00 & 1.310 & 2.0282 & 24.77 & 1.594 & 0.0587 & 117.1 & 175.6 & 234.6 & 298.3 & 357.9 & 410.4 & 459.3 & 516.4 & 456.7 \\ 18.00 & 1.241 & 2.2486 & 234.74 & 1.6621 & 0.05751 & 117.1 & 175.6 & 234.6 & 238.3 & 357.9 & 410.4 & 457.8 & 556.6 & 612.6 \\ 10.00 & 1.379 & 2.3602 & 244.74 & 1.6221 & 0.0587 & 117.1 & 175.6 & 234.6 & 235.3 & 357.9 & 410.4 & 457.8 & 556.6 & 616.6 \\ 10.00 & 1.302 & 2.303 & 302.4 & 1.977 & 0.0584 & 117.1 & 175.6 & 234.6 & 235.3 & 357.9 & 410.4 & 457.8 & 556.6 & 616.6 \\ 10.00 & 1.302 & 2.303 & 302.4 & 1.976 & 0.0587 & 117.1 & 175.6 & 234.1 & 303.8 & 346.1 & 477.2 & 556$								
4.00 .276 1.272 107.79 1.1629 0.0694 80.3 120.5 160.7 200.8 241.2 251.2 321.3 361.5 401.6 6.00 .414 1.4083 129.40 1.2401 0.06737 85.7 128.5 171.3 214.2 257.0 299.8 324.6 385.5 428.3 8.00 .552 1.5444 149.57 1.3149 0.06514 90.8 136.2 181.7 221.7 272.5 317.9 353.3 406.7 454.2 9.00 .621 1.6124 159.1 1.510 0.06143 190.7 21.4 20.7 287.6 235.5 38.4 41.4 479.3 11.00 .758 1.7486 1.645.5 0.06143 10.6 151.1 201.5 251.9 302.3 352.7 403.0 453.4 50.2 51.5 31.1 243.9 31.6 450.4 402.2 470.5 52.7 150.1 142.2 401.6 40.2 401.6 40.2 401.6 40.2 40.1.4 40.1.4 40.1.4 40.1.4 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
$ \begin{array}{c} 6.00 & .414 & 1.4083 & 129.40 & 1.2401 & 0.0677 \\ r.00 & .483 & 1.4761 & 320.7 & 248.8 & 308.9 & 353.1 & 397.2 & 441.3 \\ 8.00 & .552 & 1.5444 & 149.57 & 1.3149 & 0.06514 \\ 9.00 & .661 & 1.6805 & 168.50 & 1.3877 & 0.06318 \\ 9.00 & .661 & 1.6805 & 168.50 & 1.3877 & 0.06318 \\ 9.5.9 & 1.43.8 & 191.7 & 239.7 & 247.6 & 335.5 & 383.4 & 431.4 & 479.3 \\ 11.00 & .788 & 1.785 & 1.7453 & 1.4804 & 0.06218 \\ 9.00 & .621 & 1.6124 & 195.5 & 1.2387 & 0.06318 \\ 12.00 & .861 & 1.8865 & 166.36 & 1.4886 & 0.06143 & 100.8 & 151.1 & 201.5 & 251.9 & 302.3 & 352.7 & 403.0 & 453.4 & 501.8 \\ 13.00 & .866 & 1.8846 & 194.93 & 1.4935 & 0.0603 & 103.2 & 154.8 & 205.1 & 340.7 & 343.4 & 431.4 & 453.8 \\ 13.00 & .866 & 1.8846 & 194.93 & 1.4935 & 0.05043 & 100.8 & 151.1 & 201.5 & 251.9 & 302.3 & 352.7 & 403.0 & 453.6 & 577.7 \\ 15.00 & 1.034 & 2.0207 & 211.43 & 1.5620 & 0.05719 & 105.5 & 158.3 & 211.1 & 263.9 & 316.6 & 369.4 & 422.2 & 475.0 & 527.7 \\ 15.00 & 1.034 & 2.0207 & 211.43 & 1.5620 & 0.05719 & 110.2 & 166.8 & 225.1 & 281.3 & 337.6 & 319.9 & 450.1 & 506.4 & 523.7 \\ 16.00 & 1.102 & 2.0887 & 21.38 & 1.597 & 0.05845 & 110.1 & 163.6 & 225.1 & 281.3 & 337.6 & 319.9 & 450.1 & 506.4 & 524.7 \\ 19.00 & 1.310 & 2.2929 & 42.17 & 1.6494 & 0.0555 & 117.1 & 175.6 & 234.1 & 292.7 & 314.4 & 401.8 & 459.3 & 516.7 & 574.1 \\ 19.00 & 1.310 & 2.2929 & 42.17 & 1.6948 & 0.0555 & 117.1 & 175.6 & 234.1 & 292.7 & 317.2 & 407.8 & 466.3 & 526.8 & 585.4 \\ 21.00 & 1.542 & 2.6331 & 2.77.12 & 1.8400 & 0.05371 & 123.7 & 123.6 & 303.8 & 346.4 & 425.4 & 486.1 & 546.9 & 607.6 \\ 23.00 & 1.546 & 2.6531 & 270.40 & 1.8227 & 0.05371 & 123.7 & 128.6 & 247.5 & 309.3 & 371.2 & 433.1 & 494.9 & 556.8 & 618.6 \\ 23.00 & 1.570 & 2.4537 & 236.5 & 1.9464 & 0.05387 & 123.7 & 185.8 & 306.9 & 377.9 & 462.2 & 524.8 & 605.6 & 629.5 \\ 1.00 & 1.448 & 2.4290 & 26.57 & 1.7593 & 0.05541 & 123.7 & 185.8 & 306.4 & 455.8 & 520.9 & 586.6 & 624.5 \\ 20.0 & 1.773 & 2.4597 & 236.5 & 1.9464 & 0.05387 & 123.7 & 136.8 & 137.4 & 437.4 & 746.7 & 537.8 & 566.6 & 629.5 \\ 1.00 & 1.448 & 2.4290 & 2.6551 & 1$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
8.00 .552 1.5444 149.57 1.3149 0.0614 90.4 136.2 181.7 27.7 27.1<								
9.0 .621 1.6124 159.18 1.3516 0.6413 95.9 14.8 19.7 23.7 287.6 35.5 38.4 43.4 479.3 11.00 .758 1.7485 177.55 1.424 0.6228 98.3 147.5 196.7 245.8 295.0 344.1 39.3 442.5 491.6 12.00 .827 1.8165 1.666.3 1.618 1.00.8 15.1 201.5 30.7 35.7 40.0 45.3 15.00 1.034 2.0207 21.43 1.5620 0.05971 112.5 168.8 22.1 21.5 45.2 51.1 10.00 1.22248 234.74 1.6644 0.05557 112.5 168.8 22.1 29.1 31.6 31.6 31.7 31.6 45.1 54.7 54.1 10.0 1.448 2.4207 1.53.3 22.1 23.3 31.3 33.4 43.4 49.5 55.6 55.7 10.0 1.448								
$ \begin{array}{c} 10.00 & .689 1.6805 168.50 1.3877 0.06318 & 95.9 143.8 191.7 239.7 247.6 335.5 383.4 431.4 479.3 \\ 11.00 & .785 1.7485 17755 1.4243 0.06228 & 98.3 147.5 196.7 245.8 295.0 344.1 393. 442.5 491.6 \\ 12.00 & .896 1.8164 194.93 1.4935 0.0663 103.2 154.8 206.3 257.9 302.3 352.7 403.0 453.4 503.8 \\ 13.00 & .896 1.8164 194.93 1.4935 0.06063 103.2 154.8 206.3 257.9 302.3 352.7 403.0 453.4 515.8 \\ 14.00 & .965 1.9526 203.28 1.5279 0.05951 105.5 158.3 211.1 263.9 316.6 369.4 422.2 475.0 527.7 \\ 15.00 1.034 2.0207 211.43 1.5620 0.05914 107.9 161.8 215.8 269.7 332.7 377.6 431.6 485.5 539.5 \\ 16.00 1.103 2.0887 219.38 1.597 0.05845 110.2 165.3 220.5 275.6 330.7 385.8 440.9 496.0 551.1 \\ 17.00 1.172 2.1568 227.15 1.6290 0.05779 112.5 168.8 225.1 281.3 337.6 393.9 450.1 506.4 562.7 \\ 19.00 1.310 2.2929 242.17 1.6948 0.05555 117.1 175.6 234.1 292.7 341.4 401.8 459.3 516.7 574.1 \\ 19.00 1.310 2.2929 242.17 1.6948 0.05555 117.1 175.6 234.1 292.7 341.4 401.8 459.3 516.7 574.1 \\ 19.00 1.310 2.2929 256.57 1.7593 0.05541 12.5 182.3 243.1 303.8 354.6 425.4 486.1 546.9 607.6 \\ 23.00 1.566 2.6551 270.40 1.8227 0.05537 128.1 192.1 256.1 320.2 384.2 405.2 133.1 494.9 556.8 618.6 \\ 23.00 1.565 2.6351 270.40 1.8227 0.05337 128.1 192.1 256.1 320.2 384.2 448.2 512.3 576.6 661.1 \\ 26.00 1.732 2.7092 290.19 1.9188 0.05339 130.2 195.3 260.4 325.5 390.6 455.8 520.9 586.0 651.1 \\ 26.00 1.732 2.7092 290.19 1.9188 0.05293 132.2 195.3 260.4 325.5 390.6 455.8 520.9 586.0 651.1 \\ 26.00 1.732 1.2095 302.81 1.9767 0.05206 136.6 204.7 273.1 341.4 409.7 477.9 546.2 614.5 642.8 \\ 30.00 1.999 2.9733 30.80.6 2.0069 0.05144 13.6 207.9 277.3 346.4 419.7 477.9 546.2 661.6 632.8 \\ 30.00 2.068 3.0414 315.01 2.0368 0.05124 140.7 211.0 281.4 351.7 422.1 492.4 552.6 633.1 703.5 \\ 30.00 2.068 3.0414 315.01 2.0368 0.05124 140.7 211.0 281.4 351.7 422.1 492.5 556.9 651.7 \\ 31.00 2.137 3.1094 30.92 2.053 30.694 0.0647 148.8 232.2 297.6 372.0 440.4 513.8 581.7 631.0 643.4 591.7 634.9 \\ 30.00 2.693 3.6533 36.53 3.2979 0.05047 144.8 217.2 285.6 362.0 456.4 455.4 520.$								
11.00 .758 1.7485 177.55 1.4234 0.6228 98.3 147.5 196.7 245.8 295.0 344.1 393.3 442.5 491.6 13.00 .896 1.8846 194.93 1.4935 0.06033 103.2 154.8 206.3 257.9 309.5 361.1 411.7 464.3 515.8 14.00 .965 1.9526 203.28 1.5279 0.05987 105.5 158.3 211.1 263.9 301.6 369.4 422.2 475.0 537.5 16.00 1.042 2.0287 219.3 1.550 0.05571 112.5 168.8 221.1 281.3 337.6 431.6 485.5 551.7 18.00 1.2248 234.74 1.6648 0.5555 117.1 175.6 234.1 409.8 455.5 551.7 51.1 117.5 234.1 292.7 31.2 498.4 464.5 564.6 564.5 564.5 564.5 564.5 564.5 564.5 564.5 564.5 564.5 564.5 564.5 564.5 564.5 564.5								
$ \begin{array}{c} 12.00 & .827 1.8165 1.86 .3 6 1.4586 0.06143 & 100.8 & 151.1 & 201.5 & 251.9 & 302.3 & 52.7 & 403.0 & 453.4 & 503.8 \\ 13.00 & .965 1.8846 1.94.93 1.4935 0.06014 & 107.9 & 164.8 & 205.3 & 257.9 & 306.1 & 369.4 & 422.2 & 475.0 & 527.7 \\ 15.00 & 1.044 2.0207 211.43 1.5207 0.05987 & 105.5 & 158.3 & 211.1 & 263.9 & 316.6 & 369.4 & 422.2 & 475.0 & 527.7 \\ 15.00 & 1.03 2.0887 219.38 1.5957 0.05944 & 107.9 & 164.8 & 215.8 & 205.7 & 73.7.7 & 431.6 & 485.5 & 539.5 \\ 16.00 & 1.103 2.0887 219.38 1.5957 0.059587 & 112.5 & 168.8 & 225.1 & 281.3 & 37.6 & 431.9 & 480.9 & 486.0 & 551.1 \\ 17.00 & 1.124 2.2248 234.74 1.6621 0.05717 & 112.5 & 168.8 & 225.1 & 281.3 & 37.6 & 431.6 & 485.3 & 526.5 & 551.4 \\ 19.00 & 1.310 2.2929 242.17 1.6948 0.05655 & 117.1 & 175.0 & 234.1 & 292.7 & 351.2 & 491.8 & 535.6 & 585.4 \\ 20.00 & 1.379 2.3609 249.45 1.7272 0.05597 & 119.3 & 175.0 & 234.6 & 298.3 & 357.4 & 446.1 & 546.9 & 607.6 \\ 21.00 & 1.448 2.4290 256.57 1.7593 0.05541 & 122.1 & 182.3 & 243.1 & 303.8 & 364.6 & 254.8 & 486.8 & 566.6 & 629.5 \\ 24.00 & 1.655 2.6331 270.40 1.8227 0.05437 & 128.1 & 182.6 & 247.5 & 309.3 & 371.4 & 440.7 & 503.6 & 566.6 & 629.5 \\ 24.00 & 1.655 2.6331 270.40 1.8227 0.05437 & 128.1 & 129.1 & 266.1 & 320.5 & 390.6 & 455.8 & 520.9 & 566.0 & 651.1 \\ 26.00 & 1.773 2.7011 283.71 1.8850 0.05339 & 130.2 & 195.3 & 264.7 & 330.9 & 397.0 & 456.2 & 594.8 & 555.6 & 661.7 \\ 27.00 & 1.862 2.8372 296.56 1.9464 0.05243 & 132.1 & 196.5 & 264.7 & 330.4 & 470.6 & 531.8 & 650.6 & 672.8 \\ 29.00 & 1.999 2.9733 302.81 1.9767 0.05206 & 136.6 & 204.8 & 273.1 & 341.4 & 409.7 & 477.9 & 546.2 & 644.5 & 643.8 \\ 29.00 & 1.999 2.9733 302.81 1.9767 0.05206 & 134.6 & 270.2 & 336.1 & 403.4 & 470.6 & 571.0 & 624.2 & 733.7 \\ 30.00 & 2.068 3.0414 315.01 2.0368 0.05124 & 140.7 & 211.0 & 281.4 & 351.7 & 421.4 & 492.7 & 554.5 & 633.6 & 673.2 \\ 30.00 & 2.068 3.0414 315.01 2.0368 0.05124 & 140.7 & 211.0 & 281.4 & 351.7 & 421.4 & 492.7 & 554.5 & 633.6 & 673.2 \\ 30.00 & 2.068 3.30424 & 2.2420 0 0.05047 & 144.8 & 223.2 & 297.6 & 324.4 & 400.4 & 51.8 &$								
13.00 .965 1.8846 194.93 1.4935 0.6063 105.2 154.8 206.3 257.9 309.5 361.1 412.7 464.3 515.8 14.00 .965 1.5926 203.28 1.5270 0.05997 105.5 158.3 211.1 263.9 316.6 369.4 422.2 475.0 527.5 551.1 16.00 1.034 2.0807 219.3 1.5520 0.05791 112.5 166.8 220.5 275.6 30.7 393.9 430.1 506.4 552.1 18.00 1.212 2.248 234.74 1.6621 0.05771 112.8 166.8 220.7 314.4 401.8 450.3 556.6 517.1 175.6 234.1 249.14 646.3 526.5 557.4 66.6 607.5 67.7 593.0 656.6 167.6 62.5 67.7 530.0 51.8 112.5 182.3 243.1 303.8 364.2 486.1 56.6 62.5 62.5 61.7 62.6 61.6 62.5 61.7 62.6 61.6 62.5 61.7 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
$ \begin{array}{c} 14.00 & .965 & 1.9526 & 203.28 & 1.5279 & .05987 & 105.5 & 158.3 & 211.1 & 263.9 & 316.6 & 369.4 & 422.2 & 475.0 & 537.7 \\ 15.00 & 1.03 & 2.0867 & 219.38 & 1.5957 & .05945 & 110.2 & 165.3 & 220.5 & 275.6 & 330.7 & 377.6 & 431.6 & 485.5 & 539.5 \\ 10.00 & 1.103 & 2.0867 & 219.38 & 1.5957 & .05945 & 110.2 & 165.3 & 220.5 & 275.6 & 330.7 & 377.6 & 431.6 & 485.5 & 551.1 \\ 17.00 & 1.172 & 2.1568 & 227.15 & 1.6290 & .05779 & 112.5 & 168.8 & 225.1 & 281.3 & 337.6 & 393.9 & 450.1 & 506.4 & 562.7 \\ 18.00 & 1.241 & .2248 & 243.74 & 1.6948 & 0.5655 & 117.1 & 175.6 & 234.1 & 292.7 & 351.2 & 409.8 & 468.3 & 526.8 & 585.4 \\ 0.00 & 1.379 & 2.3609 & 249.45 & 1.7272 & 0.05571 & 113.3 & 179.0 & 238.6 & 298.3 & 357.9 & 417.6 & 477.2 & 536.9 & 596.6 \\ 21.00 & 1.488 & 2.4290 & 256.57 & 1.7593 & 0.0541 & 121.5 & 182.3 & 243.1 & 303.8 & 364.6 & 425.4 & 486.1 & 546.9 & 607.6 \\ 22.00 & 1.517 & 2.4970 & 263.55 & 1.7911 & 0.05488 & 123.7 & 185.6 & 247.5 & 309.3 & 371.2 & 433.1 & 494.9 & 556.8 & 618.6 \\ 23.00 & 1.586 & 2.5651 & 270.40 & 1.8227 & 0.05437 & 125.9 & 188.9 & 251.8 & 314.8 & 377.7 & 440.7 & 503.6 & 566.6 & 612.9 \\ 24.00 & 1.655 & 2.6331 & 277.12 & 1.8540 & 0.0539 & 130.2 & 195.3 & 266.4 & 325.5 & 300.6 & 455.8 & 520.9 & 586.0 & 651.1 \\ 26.00 & 1.793 & 2.7692 & 290.19 & 1.9158 & 0.5293 & 132.3 & 198.5 & 264.7 & 330.9 & 377.0 & 463.2 & 529.4 & 595.5 & 661.7 \\ 27.00 & 1.662 & 2.8372 & 296.56 & 1.9464 & 0.05249 & 134.5 & 201.7 & 268.9 & 336.1 & 403.4 & 470.6 & 537.8 & 605.0 & 672.3 \\ 28.00 & 1.999 & 2.9733 & 302.81 & 1.9767 & 0.0526 & 136.6 & 204.8 & 273.1 & 341.4 & 409.7 & 477.9 & 546.2 & 614.5 & 682.8 \\ 29.00 & 1.999 & 2.9733 & 302.81 & 1.9767 & 0.0526 & 136.6 & 207.9 & 277.3 & 346.6 & 415.9 & 485.2 & 554.5 & 633.1 & 703.5 \\ 31.00 & 2.168 & 3.0414 & 335.01 & 2.0368 & 0.05124 & 140.7 & 211.0 & 281.4 & 351.7 & 422.1 & 492.4 & 562.8 & 633.1 & 703.5 \\ 31.00 & 2.168 & 3.0414 & 335.0 & 2.153 & 0.04970 & 146.8 & 220.2 & 296.6 & 320.9 & 434.4 & 506.7 & 571.0 & 642.4 & 733.9 \\ 30.00 & 2.688 & 3.0414 & 335.9 & 2.04690 & 0.5124 & 14$								
$ \begin{array}{c} 15.00 & 1.034 & 2.0207 & 211.43 & 1.520 & 0.05914 & 107.9 & 161.8 & 215.8 & 267.7 & 323.7 & 377.6 & 431.6 & 485.5 & 539.5 \\ 16.00 & 1.103 & 2.0887 & 219.38 & 1.5957 & 0.05845 & 110.2 & 165.3 & 220.5 & 275.6 & 330.7 & 385.8 & 440.9 & 496.0 & 551.7 \\ 17.00 & 1.172 & 2.1568 & 27.15 & 1.6220 & 0.05779 & 112.5 & 168.8 & 225.1 & 281.3 & 337.6 & 39.9 & 450.1 & 506.4 & 562.7 \\ 18.00 & 1.241 & 2.2248 & 234.74 & 1.6621 & 0.05716 & 114.8 & 172.2 & 229.6 & 287.0 & 344.4 & 401.8 & 459.3 & 516.7 & 574.1 \\ 19.00 & 1.310 & 2.292 & 242.17 & 1.0624 & 0.05557 & 117.9 & 175.6 & 234.1 & 292.7 & 351.2 & 409.8 & 468.3 & 526.8 & 585.4 \\ 20.00 & 1.379 & 2.3609 & 249.45 & 1.7272 & 0.0557 & 119.3 & 175.0 & 238.6 & 283. & 357.9 & 417.6 & 477.2 & 536.9 & 596.6 \\ 21.00 & 1.448 & 2.4200 & 266.57 & 1.7593 & 0.05541 & 121.5 & 182.3 & 241.8 & 317.7 & 440.7 & 507.6 & 566.6 & 629.5 \\ 21.00 & 1.517 & 2.4970 & 263.55 & 1.7911 & 0.05488 & 123.7 & 188.9 & 251.8 & 314.8 & 377.7 & 440.7 & 503.6 & 566.6 & 629.5 \\ 23.00 & 1.565 & 2.6331 & 277.12 & 18540 & 0.05339 & 130.2 & 195.3 & 260.4 & 252.5 & 390.6 & 455.8 & 520.9 & 586.0 & 651.1 \\ 25.00 & 1.724 & 2.7011 & 283.71 & 1.8850 & 0.05339 & 130.2 & 195.3 & 260.4 & 252.5 & 390.6 & 455.8 & 520.9 & 586.0 & 651.7 \\ 27.00 & 1.862 & 2.8372 & 290.5 & 1.9464 & 0.05249 & 134.5 & 207.7 & 346.6 & 415.9 & 485.2 & 545.5 & 661.7 \\ 27.00 & 1.862 & 2.8372 & 290.5 & 1.9464 & 0.05164 & 136.6 & 204.8 & 271.1 & 341.4 & 409.7 & 477.9 & 546.2 & 614.5 & 622.8 \\ 30.00 & 1.999 & 2.9733 & 302.86 & 1.0056 & 0.05164 & 136.6 & 204.8 & 271.1 & 346.6 & 415.9 & 485.2 & 545.5 & 563.1 & 703.9 \\ 31.00 & 2.108 & 3.1775 & 326.83 & 2.0959 & 0.05047 & 144.8 & 217.2 & 289.6 & 362.0 & 434.4 & 506.7 & 7591.1 & 651.5 & 733.9 \\ 33.00 & 2.206 & 3.1775 & 326.83 & 2.05504 & 140.7 & 211.0 & 281.4 & 307.1 & 452.4 & 506.7 & 5791.1 & 651.5 & 733.9 \\ 33.00 & 2.206 & 3.1775 & 326.83 & 2.05504 & 144.7 & 211.2 & 287.6 & 362.0 & 434.4 & 506.7 & 7591.1 & 651.5 & 733.9 \\ 33.00 & 2.344 & 3.3316 & 334.89 & 2.1833 & 0.04974 & 144.8 & 217.2 & 287.6 & 362.0 & 4$								
$ \begin{array}{c} 16.00 \ 1.103 \ 2.0887 \ 219.38 \ 1.5957 \ 0.05845 \ 110.2 \ 165.3 \ 220.5 \ 275.6 \ 330.7 \ 35.8 \ 440.9 \ 496.0 \ 551.1 \ 17.00 \ 1.172 \ 2.1568 \ 227.15 \ 1.6290 \ 0.05779 \ 112.5 \ 168.8 \ 225.1 \ 281.3 \ 337.6 \ 333.9 \ 450.1 \ 506.4 \ 562.7 \ 18.00 \ 1.241 \ 2.2248 \ 234.74 \ 1.6621 \ 0.05716 \ 114.8 \ 172.2 \ 229.6 \ 287.0 \ 344.4 \ 401.8 \ 459.3 \ 516.7 \ 574.1 \ 19.00 \ 1.310 \ 2.2929 \ 242.17 \ 1.6948 \ 0.05555 \ 117.1 \ 175.6 \ 234.1 \ 222.7 \ 351.2 \ 409.8 \ 468.3 \ 526.8 \ 585.4 \ 20.00 \ 1.379 \ 2.3602 \ 249.5 \ 247.7 \ 272.0 \ 0.5557 \ 119.3 \ 175.6 \ 234.1 \ 222.7 \ 351.2 \ 409.8 \ 468.3 \ 526.8 \ 585.4 \ 21.00 \ 1.448 \ 2.4290 \ 256.5 \ 71.753 \ 0.05541 \ 121.5 \ 182.3 \ 234.1 \ 30.8 \ 364.6 \ 425.4 \ 466.1 \ 546.9 \ 607.6 \ 22.00 \ 1.571 \ 2.409.8 \ 466.3 \ 526.8 \ 548.6 \ 22.00 \ 1.571 \ 2.409.8 \ 466.3 \ 526.8 \ 548.6 \ 22.00 \ 1.565 \ 2.6331 \ 277.12 \ 1.8540 \ 0.05387 \ 128.1 \ 192.1 \ 256.1 \ 30.2 \ 30.2 \ 342.2 \ 448.2 \ 512.3 \ 576.3 \ 640.4 \ 25.00 \ 1.724 \ 2.7011 \ 28.771 \ 1.8540 \ 0.05387 \ 128.1 \ 192.1 \ 256.1 \ 320.2 \ 384.2 \ 440.7 \ 503.6 \ 566.6 \ 629.5 \ 24.00 \ 1.724 \ 2.7011 \ 28.771 \ 1.8550 \ 0.0539 \ 130.2 \ 195.3 \ 260.4 \ 325.5 \ 390.6 \ 455.8 \ 520.9 \ 586.0 \ 651.1 \ 26.00 \ 1.793 \ 2.7692 \ 296.5 \ 1.9644 \ 0.05293 \ 132.3 \ 198.5 \ 264.7 \ 330.9 \ 397.0 \ 463.2 \ 529.4 \ 595.5 \ 661.7 \ 270.0 \ 1662 \ 2.8372 \ 296.5 \ 1.9644 \ 0.05249 \ 134.5 \ 201.7 \ 268.9 \ 336.1 \ 40.4 \ 409.7 \ 477.9 \ 546.2 \ 614.5 \ 622.8 \ 330.0 \ 9.92.9 \ 330.6 \ 415.9 \ 465.2 \ 571.0 \ 642.4 \ 713.7 \ 754.1 \ 290.0 \ 1.992 \ 2.973 \ 30.6 \ 3.56.9 \ 428.2 \ 499.6 \ 571.0 \ 642.4 \ 713.7 \ 733.0 \ 200.0 \ 2.068 \ 3.0414 \ 315.0 \ 2.059 \ 30.050 \ 1.48 \ 207.9 \ 277.3 \ 346.6 \ 446.4 \ 513.8 \ 587.2 \ 663.1 \ 734.9 \ 30.0 \ 2.063 \ 3.064 \ 354.4 \ 514.5 \ 622.8 \ 633.1 \ 733.9 \ 30.0 \ 2.063 \ 3.064.4 \ 513.8 \ 587.2 \ 661.7 \ 734.9 \ 330.0 \ 2.444.5 \ 334.4 \ 517.6 \ 573.8 \ 633.1 \ 733.9 \ 30.0 \ 2.663.7 \ 734.0 \ 435.4 \ 435.9 \ 456.4 \ 456.4 \ 456.4 \ 456.4 \ 456.4 \ 456.4 \ 456$								
$\begin{array}{c} 17.00 \ 1.172 \ 2.1566 \ 227.15 \ 1.6290 \ 0.05779 \ 112.5 \ 168.8 \ 225.1 \ 281.3 \ 337.6 \ 333.9 \ 450.1 \ 506.4 \ 562.7 \ 18.00 \ 1.241 \ 2.2248 \ 234.74 \ 1.6621 \ 0.05716 \ 114.8 \ 172.2 \ 229.6 \ 287.0 \ 344.4 \ 401.8 \ 459.3 \ 516.7 \ 574.1 \ 9.00 \ 1.310 \ 2.2249 \ 244.17 \ 1.6948 \ 0.05555 \ 117.1 \ 175.6 \ 234.1 \ 292.7 \ 351.2 \ 409.8 \ 460.3 \ 526.8 \ 585.4 \ 20.00 \ 1.379 \ 2.3609 \ 249.45 \ 1.7272 \ 0.05557 \ 119.3 \ 177.0 \ 238.6 \ 287.3 \ 357.9 \ 417.6 \ 477.2 \ 536.9 \ 596.6 \ 22.00 \ 1.517 \ 2.4970 \ 265.55 \ 1.7513 \ 0.05557 \ 119.3 \ 179.0 \ 238.6 \ 247.5 \ 309.3 \ 371.2 \ 433.1 \ 494.9 \ 556.8 \ 618.6 \ 23.00 \ 1.556 \ 2.6351 \ 271.0 \ 0.0537 \ 128.1 \ 123.7 \ 185.6 \ 247.5 \ 309.3 \ 377.7 \ 440.7 \ 503.6 \ 556.6 \ 629.5 \ 244.00 \ 1.655 \ 2.6331 \ 277.12 \ 1.8450 \ 0.0537 \ 128.1 \ 192.1 \ 256.1 \ 320.2 \ 384.2 \ 448.2 \ 512.3 \ 576.3 \ 604.4 \ 25.00 \ 1.724 \ 2.7011 \ 287.7 \ 11.8450 \ 0.0537 \ 128.1 \ 192.1 \ 256.1 \ 320.2 \ 384.2 \ 448.2 \ 512.3 \ 576.3 \ 604.4 \ 25.00 \ 1.724 \ 2.7011 \ 287.7 \ 11.8450 \ 0.05379 \ 134.5 \ 201.7 \ 266.9 \ 336.1 \ 403.4 \ 470.6 \ 537.8 \ 605.0 \ 651.1 \ 27.00 \ 1.662 \ 2.8372 \ 290.19 \ 1.9158 \ 0.0529 \ 134.5 \ 201.7 \ 266.4 \ 335.7 \ 397.0 \ 455.2 \ 537.8 \ 605.0 \ 672.3 \ 28.0 \ 1.991 \ 2.973 \ 30.8 \ 92.055 \ 1.22.7 \ 266.9 \ 336.1 \ 403.4 \ 470.6 \ 537.8 \ 623.8 \ 633.1 \ 703.8 \ 639.2 \ 330.0 \ 1.991 \ 2.973 \ 306.9 \ 2.055 \ 1.22.0 \ 21.1 \ 21.0 \ 28.4 \ 351.7 \ 422.1 \ 492.4 \ 562.8 \ 633.1 \ 703.8 \ 639.2 \ 330.0 \ 2.068 \ 3.0414 \ 315.0 \ 2.065 \ 1.42.7 \ 214.1 \ 285.5 \ 356.9 \ 434.4 \ 506.7 \ 579.1 \ 623.8 \ 639.2 \ 633.1 \ 703.8 \ 639.2 \ 633.1 \ 703.8 \ 639.2 \ 633.1 \ 703.8 \ 639.2 \ 633.1 \ 703.8 \ 639.2 \ 633.1 \ 703.8 \ 639.2 \ 633.1 \ 703.8 \ 639.2 \ 633.1 \ 703.8 \ 639.2 \ 733.1 \ 734.4 \ 735.9 \ 739.6 \ 744.1 \ 733.9 \ 734.4 \ 735.7 \ 739.4 \ 735.1 \ 739.4 \ 735.1 \ 739.4 \ 735.4 \ 739.4 \ 735.7 \ 739.4 \ 735.1 \ 739.4 \ 735.1 \ 739.4 \ 735.4 \ 735.4 \ 735.4 \ 735.4 \ 735.4 \ 735.4 \ 735.4 \ 735.4 \ 735.4 \ 735.4 \ 735.4 \ 735$								
18.00 1.241 2.2248 234.74 1.6621 0.05716 114.8 17.2 229.6 247.0 344.4 401.8 459.3 51.6.7 574.1 19.00 1.379 2.3609 242.17 1.5948 0.05557 119.3 179.0 238.6 287.0 351.2 409.8 468.3 556.6 21.00 1.448 2.4290 256.57 1.753 0.05541 121.5 182.3 243.1 30.8 364.6 425.4 486.1 546.9 607.6 22.00 1.517 2.6511 270.40 1.8227 0.05337 125.9 188.9 251.8 314.8 377.7 440.7 50.6 566.6 629.5 24.00 1.655 2.6331 270.14 1.8850 0.05239 132.3 198.5 261.4 30.5 30.6 452.8 52.9 586.6 621.8 25.00 1.792 296.56 1.9464 0.05249 134.5 201.7 341.4 400.7 477.9 546.2 614.5 622.8 20.00 1.9063 302.81 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
19.001.3102.292242.171.69480.05655117.1175.6234.1292.7351.2409.8468.3526.8585.420.001.3792.3609249.451.77290.05597119.3179.0238.6298.3357.9417.6477.2536.9596.621.001.5172.4970265.571.75930.05541121.5182.3243.1303.8341.4442.4486.1546.9607.623.001.5522.6331277.121.86200.5347128.1192.1256.1320.2348.2448.251.356.6629.524.001.6522.6331277.121.88500.05387128.1192.1256.1320.4448.252.9586.0651.126.001.7932.7692290.19191580.05293132.2195.3264.7330.9397.0463.252.9586.0651.126.001.7932.7692290.19191580.05249134.5201.7281.4409.4470.557.8605.0672.227.001.8622.8372296.561.94640.05249134.5201.7281.4451.7422.1492.4562.863.230.002.0683.0414315.012.03680.05164138.6207.9273.3346.6415.9485.2545.5561.773.930.002.1633.1775326.632.05050 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
20.00 1.379 2.3609 24.45 1.7272 0.05597 119.3 179.0 28.6 29.8.3 357.9 417.6 477.2 536.9 596.6 21.00 1.544 2.4290 256.57 1.7593 0.05541 121.5 182.3 243.1 303.8 364.6 425.4 486.1 546.9 607.6 22.00 1.517 2.4970 263.551 270.40 1.8227 0.05487 122.1 182.1 251.1 301.8 371.2 448.2 521.3 566.6 629.5 24.00 1.724 2.7011 283.71 1.8850 0.05339 130.2 195.3 260.4 325.5 390.6 455.8 520.9 586.0 651.1 26.00 1.793 2.7692 290.19 1.9158 0.05229 132.3 198.5 264.7 330.9 397.0 463.2 529.4 595.6 661.7 27.00 1.582 2.9733 30.896 2.0069 0.05124 140.7 210.0 281.4 409.7 477.2 454.5 52.8 633.1								
21.00 1.448 2.4290 265.57 1.7593 0.05541 121.5 182.3 243.1 303.8 364.6 425.4 486.1 546.9 607.6 22.00 1.517 2.4970 265.55 1.7011 0.05481 122.7 185.6 247.5 309.3 371.2 433.1 494.9 556.8 618.6 23.00 1.552 2.6311 277.12 1.8240 0.05337 128.1 192.1 256.1 320.2 384.2 448.2 512.3 576.3 640.4 25.00 1.7592 290.19 1.9158 0.05293 132.3 196.5 264.7 330.9 397.0 463.2 529.4 595.5 661.7 27.00 1.862 2.8372 296.55 1.9464 0.05206 136.6 204.8 273.1 341.4 409.7 477.9 546.2 614.5 622.8 29.00 1.999 2.9733 308.96 2.0069 0.05164 136.6 207.9 277.3 346.6 415.9 482.5 545.5 623.8 633.1 703.5								
22.00 1.517 2.4970 263.55 1.7911 0.05488 123.7 185.6 247.5 309.3 371.2 433.1 494.9 556.8 618.6 23.00 1.586 2.5651 270.40 1.8227 0.05387 122.1 125.18 314.8 377.7 440.7 503.6 566.6 629.5 24.00 1.652 2.631 277.12 1.8850 0.05339 130.2 195.3 260.4 325.5 390.6 455.8 520.9 586.0 651.1 26.00 1.793 2.7692 290.19 1.9158 0.05293 134.5 201.7 268.9 366.1 403.4 470.6 537.8 605.0 672.3 28.00 1.991 2.9053 302.81 1.977 0.05266 136.6 204.8 273.1 341.4 409.7 477.9 546.2 631.7 703.5 30.00 2.9073 308.96 2.0069 0.05164 136.7 211.0 281.4 51.7 242.1 492.4 552.8 633.1 703.5 31.00 2.137 31								
23.00 1.586 2.5651 270.40 1.8227 0.05437 125.9 188.9 251.8 314.8 377.7 440.7 503.6 566.6 629.5 24.00 1.655 2.631 277.12 1.8850 0.05339 130.2 195.3 260.4 325.5 30.6 455.8 520.9 586.0 651.1 25.00 1.724 2.0112 1.9158 0.05239 132.3 198.5 264.7 30.9 397.0 463.2 529.4 595.5 661.7 27.00 1.862 2.8372 296.56 1.9464 0.05249 134.5 201.7 268.9 316.1 403.4 470.6 537.8 605.0 672.3 38.00 1.993 2.9733 308.96 2.0059 0.05124 140.7 211.0 281.4 351.7 422.4 492.4 562.8 633.1 703.5 31.00 2.1053 32.045 0.05047 144.8 217.2 141.2 255.5 631.4 73.1 631.7 73.5 660.6 744.0 33.00 2.1252 0.0501								
24.00 1.655 2.6331 277.12 1.8540 0.05387 128.1 192.1 256.1 320.2 384.2 448.2 512.3 576.3 640.4 25.00 1.724 2.7011 283.71 1.8850 0.05339 130.2 195.3 260.4 325.5 390.6 455.8 520.9 586.0 651.1 26.00 1.931 2.90556 1.9464 0.05249 134.5 201.7 268.9 336.1 403.4 470.6 537.8 605.0 672.3 29.00 1.999 2.9733 308.96 2.0069 0.05164 136.6 204.8 237.1 341.4 409.7 477.9 546.2 614.5 682.8 29.00 1.999 2.9733 30.46 435.9 482.2 499.6 571.0 642.4 713.7 30.00 2.063 3.0414 315.01 2.0689 144.7 211.0 281.4 351.7 422.1 492.4 562.8 633.1 703.5 31.00 2.137 3.14.63 3.0494 148.8 220.2 293.6								
25.00 1.724 2.7011 283.71 1.8850 0.05339 130.2 195.3 260.4 325.5 390.6 455.8 520.9 586.0 651.1 26.00 1.793 2.7692 290.19 1.9158 0.05293 132.3 198.5 264.7 330.9 397.0 463.2 529.4 595.5 661.7 27.00 1.862 2.8372 296.56 1.9464 0.05249 134.5 201.7 268.9 336.1 403.4 470.6 537.8 605.0 672.3 28.00 1.999 2.9733 308.96 2.0069 0.05164 138.6 207.9 277.3 346.6 415.9 485.2 554.5 623.8 633.1 703.5 31.00 2.137 3.10434 315.07 2.0665 0.05085 142.7 214.1 285.5 366.0 434.4 506.7 751.0 651.5 723.9 33.00 2.275 3.2455 32.60 2.152 0.5010 146.8 220.2 297.6 37.0 445.5 520.9 553.5 660.7 744								
26.00 1.793 2.7692 290.19 1.9158 0.05293 132.3 198.5 264.7 330.9 397.0 463.2 529.4 595.5 661.7 27.00 1.862 2.8372 296.56 1.9464 0.05249 134.5 201.7 268.9 336.1 403.4 470.6 537.8 605.0 672.3 28.00 1.999 2.9733 308.96 2.0069 0.05164 138.6 207.9 277.3 346.6 415.9 485.2 554.5 623.8 693.2 30.00 2.068 3.0414 315.01 2.0368 0.05124 140.7 211.0 281.4 535.7 422.1 499.6 571.0 642.4 713.7 32.00 2.206 3.1775 326.83 2.0959 0.5047 144.8 217.2 289.6 362.0 434.4 506.7 791.1 651.5 723.9 35.00 2.413 3.316 343.49 2.183 0.04940 150.8 220.2 297.6 370.0 452.4 521.9 603.7 754.1 36.00								
27.00 1.862 2.8372 296.56 1.9464 0.05249 134.5 201.7 268.9 336.1 403.4 470.6 537.8 605.0 672.3 28.00 1.931 2.9053 302.81 1.9767 0.05206 136.6 204.8 273.1 341.4 409.7 477.9 546.2 614.5 682.8 29.00 1.999 2.9733 308.96 2.0069 0.05164 138.6 207.9 277.3 346.6 415.9 492.2 554.5 623.8 693.2 30.00 2.137 3.1094 320.97 2.0665 0.05085 142.7 214.1 285.5 356.9 428.2 499.6 571.0 642.4 713.7 32.00 2.206 3.1775 326.83 2.0595 0.05047 144.8 220.2 293.6 367.0 440.4 513.8 587.2 660.6 734.0 34.00 2.344 3.3136 338.29 2.1543 0.04974 148.8 223.2 297.6 372.0 446.5 520.9 595.3 669.7 744.1								
28.00 1.931 2.9053 302.81 1.9767 0.05206 136.6 204.8 273.1 341.4 409.7 477.9 546.2 614.5 682.8 29.00 1.999 2.9733 308.96 2.0069 0.05164 138.6 207.9 277.3 346.6 415.9 485.2 554.5 623.8 693.2 30.00 2.068 3.0414 315.01 2.0368 0.05124 140.7 211.0 281.4 351.7 422.1 492.4 562.8 633.1 703.5 31.00 2.206 3.1775 326.83 2.0959 0.05047 144.8 217.2 289.6 362.0 434.4 506.7 579.1 651.5 723.9 34.00 2.344 3.316 343.89 2.1543 0.04974 148.8 220.2 297.6 372.0 446.4 513.8 587.2 606.6 734.0 35.00 2.442 3.4496 349.42 2.2120 0.04906 152.8 229.2 305.6 382.0 458.4 534.8 611.2 687.6 764.0								
29.00 1.999 2.9733 308.96 2.0069 0.05164 138.6 207.9 277.3 346.6 415.9 485.2 554.5 623.8 693.2 30.00 2.068 3.0414 315.01 2.0368 0.05124 140.7 211.0 281.4 351.7 422.1 492.4 562.8 633.1 703.5 31.00 2.137 3.1094 320.97 2.0665 0.05085 142.7 214.1 285.5 356.9 428.2 499.6 571.0 642.4 713.7 32.00 2.205 3.1775 326.83 2.0959 0.05047 144.8 217.2 289.6 367.0 440.4 513.8 587.2 660.6 734.0 34.00 2.344 3.316 343.92 2.1833 0.04974 148.8 222.2 297.6 372.0 446.5 520.9 595.3 669.7 744.1 35.00 2.482 3.4496 349.42 2.2120 0.04906 152.8 229.2 305.6 382.0 458.4 534.8 611.2 667.5 773.9								
30.00 2.068 3.0414 315.01 2.0368 0.05124 140.7 211.0 281.4 351.7 422.1 492.4 562.8 633.1 703.5 31.00 2.137 3.1094 320.97 2.0665 0.05085 142.7 214.1 285.5 356.9 428.2 499.6 571.0 642.4 713.7 32.00 2.206 3.1775 326.83 2.0959 0.05047 144.8 217.2 289.6 362.0 434.4 506.7 579.1 651.5 723.9 33.00 2.275 3.2455 332.60 2.1252 0.05010 146.8 220.2 293.6 367.0 440.4 513.8 587.2 660.7 744.1 35.00 2.413 3.3816 343.89 2.1833 0.04940 150.8 226.2 301.6 377.0 452.4 534.8 611.2 687.7 744.1 36.00 2.482 3.4496 349.42 2.2120 0.04801 156.7 235.1 313.5 391.8 470.2 548.6 620.9 705.3 783.7								
31.00 2.137 3.1094 320.97 2.0665 0.05085 142.7 214.1 285.5 356.9 428.2 499.6 571.0 642.4 713.7 32.00 2.206 3.1775 326.83 2.0959 0.05047 144.8 217.2 289.6 362.0 434.4 506.7 579.1 651.5 723.9 33.00 2.275 3.2455 332.60 2.1252 0.05010 146.8 220.2 293.6 367.0 440.4 513.8 587.2 660.6 734.0 34.00 2.344 3.3136 338.9 2.1833 0.04974 148.8 222.2 297.6 372.0 446.5 520.9 555.3 669.7 744.1 35.00 2.443 3.4496 349.42 2.2120 0.04906 152.8 229.2 305.6 382.0 458.4 541.7 619.1 696.5 773.9 36.00 2.620 3.6587 360.23 2.2972 0.04811 158.7 238.0 317.4 396.7 476.1 555.4 634.7 714.1 793.4								
32.00 2.206 3.1775 326.83 2.0959 0.05047 144.8 217.2 289.6 362.0 434.4 506.7 579.1 651.5 723.9 33.00 2.275 3.2455 332.60 2.1252 0.05010 146.8 220.2 293.6 367.0 440.4 513.8 587.2 660.6 734.0 34.00 2.344 3.3136 338.29 2.1543 0.04974 148.8 223.2 297.6 372.0 446.5 520.9 595.3 669.7 744.1 35.00 2.442 3.4496 349.42 2.2120 0.04906 152.8 220.2 305.6 382.0 458.4 534.8 611.2 687.6 764.0 36.00 2.620 3.5857 360.23 2.2689 0.04841 156.7 235.1 313.5 391.8 470.2 548.6 626.9 705.3 783.7 39.00 2.689 3.6538 365.53 2.2972 0.04810 158.7 238.0 317.4 396.7 476.1 555.4 642.7 714.1 793.4								
33.00 2.275 3.2455 332.60 2.1252 0.05010 146.8 220.2 293.6 367.0 440.4 513.8 587.2 660.6 734.0 34.00 2.344 3.3136 338.29 2.1543 0.04974 148.8 223.2 297.6 372.0 446.5 520.9 595.3 669.7 744.1 35.00 2.413 3.3816 343.89 2.1833 0.04906 152.8 220.2 305.6 382.0 458.4 534.8 611.2 687.6 764.0 37.00 2.4513 3.5486 2.2405 0.04873 154.8 232.2 309.5 386.9 464.3 541.7 619.1 696.5 773.9 38.00 2.620 3.5857 360.23 2.2689 0.04841 158.7 238.0 317.4 396.7 476.1 555.4 634.7 714.1 793.4 40.00 2.758 3.7218 370.76 2.3252 0.04780 160.6 240.9 321.2 401.6 481.9 562.2 642.5 722.8 803.1 41								
34.002.3443.3136338.292.15430.04974148.8223.2297.6372.0446.5520.9595.3669.7744.135.002.4133.3816343.892.18330.04900150.8226.2301.6377.0452.4527.9603.3678.7754.136.002.4823.4496349.422.21200.04906152.8229.2305.6382.0458.4534.8611.2687.6764.037.002.5513.5177354.862.24050.04873154.8232.2309.5386.9464.3541.7619.1696.5773.938.002.6203.5857360.232.26890.04841156.7235.1313.5391.8470.2548.6626.9705.3783.739.002.6893.6538365.532.29720.04810158.7238.0317.4396.7476.1555.4634.7714.1793.440.002.7583.7218370.762.32520.04780160.6240.9321.2401.6481.9562.2642.5722.8803.141.002.8273.7899375.922.35310.04750162.5243.8322.1406.4487.6568.9650.2731.5812.742.002.8963.8579381.012.38080.04722166.4249.6332.7415.9499.1582.3665.5748.7831.944.00								
35.002.4133.3816343.892.18330.04940150.8226.2301.6377.0452.4527.9603.3678.7754.136.002.4823.4496349.422.21200.04906152.8229.2305.6382.0458.4534.8611.2687.6764.037.002.5513.5177354.862.24050.04873154.8232.2309.5386.9464.3541.7619.1696.5773.938.002.6203.5857360.232.26890.04841156.7235.1313.5391.8470.2548.6626.9705.3783.739.002.6893.6538365.532.29720.04810158.7238.0317.4396.7476.1555.4634.7714.1793.440.002.7583.7218370.762.32520.04780160.6240.9321.2401.6481.9562.2642.5722.8803.141.002.8273.7899375.922.35310.04750162.5243.8325.1406.4487.6568.9650.2731.5812.742.002.8963.8579381.012.38080.04722164.5246.7328.9411.2493.4575.6657.9740.1822.343.002.9653.9260386.042.40840.04693166.4249.6332.7415.9499.1582.3665.5748.7831.944.00								
36.002.4823.4496349.422.21200.04906152.8229.2305.6382.0458.4534.8611.2687.6764.037.002.5513.5177354.862.24050.04873154.8232.2309.5386.9464.3541.7619.1696.5773.938.002.6203.5857360.232.26890.04841156.7235.1313.5391.8470.2548.6626.9705.3783.739.002.6893.6538365.532.29720.04810158.7238.0317.4396.7476.1555.4634.7714.1793.440.002.7583.7218370.762.32520.04780160.6240.9321.2401.6481.9562.2642.5722.8803.141.002.8273.7899375.922.35310.04750162.5243.8325.1406.4487.6568.9650.2731.5812.742.002.8963.8579381.012.38080.04722164.5246.7328.9411.2493.4575.6657.9740.1822.343.002.9653.9260386.042.40840.04693166.4249.6332.7415.9499.1582.3665.5748.7831.944.003.0343.9940391.012.43590.04666168.3252.4336.5420.7504.8588.9673.1757.2841.345.00								
37.002.5513.5177354.862.24050.04873154.8232.2309.5386.9464.3541.7619.1696.5773.938.002.6203.5857360.232.26890.04841156.7235.1313.5391.8470.2548.6626.9705.3783.739.002.6893.6538365.532.29720.04810158.7238.0317.4396.7476.1555.4634.7714.1793.440.002.7583.7218370.762.32520.04780160.6240.9321.2401.6481.9562.2642.5722.8803.141.002.8273.7899375.922.35310.04750162.5243.8325.1406.4487.6568.9650.2731.5812.742.002.8963.8579381.012.38080.04722164.5246.7328.9411.2493.4575.6657.9740.1822.343.002.9653.9260386.042.40840.04693166.4249.6332.7415.9499.1582.3665.5748.7831.944.003.0343.9940391.012.43590.04666168.3252.4336.5420.7504.8588.9673.1757.2841.345.003.1034.0621395.922.46320.04639170.2255.2340.3425.4510.5595.5680.6765.7850.846.00								
38.00 2.620 3.5857 360.23 2.2689 0.04841 156.7 235.1 313.5 391.8 470.2 548.6 626.9 705.3 783.7 39.00 2.689 3.6538 365.53 2.2972 0.04810 158.7 238.0 317.4 396.7 476.1 555.4 634.7 714.1 793.4 40.00 2.758 3.7218 370.76 2.3252 0.04780 160.6 240.9 321.2 401.6 481.9 562.2 642.5 722.8 803.1 41.00 2.827 3.7899 375.92 2.3531 0.04750 162.5 243.8 325.1 406.4 487.6 568.9 650.2 731.5 812.7 42.00 2.896 3.8579 381.01 2.3808 0.04722 164.5 246.7 328.9 411.2 493.4 575.6 657.9 740.1 822.3 43.00 2.965 3.9260 386.04 2.4084 0.04693 170.2 255.2 340.3 425.4 510.5 585.6 680.6 765.7 850.8								
39.002.6893.6538365.532.29720.04810158.7238.0317.4396.7476.1555.4634.7714.1793.440.002.7583.7218370.762.32520.04780160.6240.9321.2401.6481.9562.2642.5722.8803.141.002.8273.7899375.922.35310.04750162.5243.8325.1406.4487.6568.9650.2731.5812.742.002.8963.8579381.012.38080.04722164.5246.7328.9411.2493.4575.6657.9740.1822.343.002.9653.9260386.042.40840.04693166.4249.6332.7415.9499.1582.3665.5748.7831.944.003.0343.9940391.012.43590.04666168.3252.4336.5420.7504.8588.9673.1757.2841.345.003.1034.0621395.922.46320.04639170.2255.2340.3425.4510.5595.5680.6765.7850.846.003.1724.1301400.772.49030.04613172.0258.0344.1430.1516.1602.1688.1774.1860.147.003.2414.1981405.562.51730.04583175.8263.6351.5439.4527.3615.1703.0790.9878.849.00								
40.002.7583.7218370.762.32520.04780160.6240.9321.2401.6481.9562.2642.5722.8803.141.002.8273.7899375.922.35310.04750162.5243.8325.1406.4487.6568.9650.2731.5812.742.002.8963.8579381.012.38080.04722164.5246.7328.9411.2493.4575.6657.9740.1822.343.002.9653.9260386.042.40840.04693166.4249.6332.7415.9499.1582.3665.5748.7831.944.003.0343.9940391.012.43590.04666168.3252.4336.5420.7504.8588.9673.1757.2841.345.003.1034.0621395.922.46320.04639170.2255.2340.3425.4510.5595.5680.6765.7850.846.003.1724.1301400.772.49030.04613172.0258.0344.1430.1516.1602.1688.1774.1860.147.003.2414.1981405.562.51730.04583175.8263.6351.5439.4527.3615.1703.0790.9878.849.003.3784.3342414.982.57100.04538177.6266.4355.2444.0532.8621.6710.4799.2888.050.00								
41.002.8273.7899375.922.35310.04750162.5243.8325.1406.4487.6568.9650.2731.5812.742.002.8963.8579381.012.38080.04722164.5246.7328.9411.2493.4575.6657.9740.1822.343.002.9653.9260386.042.40840.04693166.4249.6332.7415.9499.1582.3665.5748.7831.944.003.0343.9940391.012.43590.04666168.3252.4336.5420.7504.8588.9673.1757.2841.345.003.1034.0621395.922.46320.04639170.2255.2340.3425.4510.5595.5680.6765.7850.846.003.1724.1301400.772.49030.04613172.0258.0344.1430.1516.1602.1688.1774.1860.147.003.2414.1981405.562.51730.04563175.8263.6351.5433.4527.3615.1703.0790.9878.849.003.3784.3342414.982.57100.04538177.6266.4355.2444.0532.8621.6710.4799.2888.050.003.4474.4023419.612.59760.04514179.4269.2358.9448.6538.3628.0717.8807.5897.2FSIBA								
42.002.8963.8579381.012.38080.04722164.5246.7328.9411.2493.4575.6657.9740.1822.343.002.9653.9260386.042.40840.04693166.4249.6332.7415.9499.1582.3665.5748.7831.944.003.0343.9940391.012.43590.04666168.3252.4336.5420.7504.8588.9673.1757.2841.345.003.1034.0621395.922.46320.04639170.2255.2340.3425.4510.5595.5680.6765.7850.846.003.1724.1301400.772.49030.04613172.0258.0344.1430.1516.1602.1688.1774.1860.147.003.2414.1981405.562.51730.04588173.9260.8347.8434.7521.7608.6695.6782.5869.548.003.3094.2662410.302.54420.04533175.8263.6351.5439.4527.3615.1703.0790.9878.849.003.3784.3342414.982.57100.04538177.6266.4355.2444.0532.8621.6710.4799.2888.050.003.4474.4023419.612.59760.04514179.4269.2358.9448.6538.3628.0717.8807.5897.2FSIBA								
43.002.9653.9260386.042.40840.04693166.4249.6332.7415.9499.1582.3665.5748.7831.944.003.0343.9940391.012.43590.04666168.3252.4336.5420.7504.8588.9673.1757.2841.345.003.1034.0621395.922.46320.04639170.2255.2340.3425.4510.5595.5680.6765.7850.846.003.1724.1301400.772.49030.04613172.0258.0344.1430.1516.1602.1688.1774.1860.147.003.2414.1981405.562.51730.04588173.9260.8347.8434.7521.7608.6695.6782.5869.548.003.3094.2662410.302.54420.04563175.8263.6351.5439.4527.3615.1703.0790.9878.849.003.3784.3342414.982.57100.04538177.6266.4355.2444.0532.8621.6710.4799.2888.050.003.4474.4023419.612.59760.04514179.4269.2358.9448.6538.3628.0717.8807.5897.2PSIBARSRatioTempRatioDensity100015002000250030003500400045005000								
44.003.0343.9940391.012.43590.04666168.3252.4336.5420.7504.8588.9673.1757.2841.345.003.1034.0621395.922.46320.04639170.2255.2340.3425.4510.5595.5680.6765.7850.846.003.1724.1301400.772.49030.04613172.0258.0344.1430.1516.1602.1688.1774.1860.147.003.2414.1981405.562.51730.04588173.9260.8347.8434.7521.7608.6695.6782.5869.548.003.3094.2662410.302.54420.04563175.8263.6351.5439.4527.3615.1703.0790.9878.849.003.3784.3342414.982.57100.04538177.6266.4355.2444.0532.8621.6710.4799.2888.050.003.4474.4023419.612.59760.04514179.4269.2358.9448.6538.3628.0717.8807.5897.2PSIBARSRatioTempRatioDensity100015002000250030003500400045005000								
45.003.1034.0621395.922.46320.04639170.2255.2340.3425.4510.5595.5680.6765.7850.846.003.1724.1301400.772.49030.04613172.0258.0344.1430.1516.1602.1688.1774.1860.147.003.2414.1981405.562.51730.04588173.9260.8347.8434.7521.7608.6695.6782.5869.548.003.3094.2662410.302.54420.04563175.8263.6351.5439.4527.3615.1703.0790.9878.849.003.3784.3342414.982.57100.04538177.6266.4355.2444.0532.8621.6710.4799.2888.050.003.4474.4023419.612.59760.04514179.4269.2358.9448.6538.3628.0717.8807.5897.2PSIBARSRatioTempRatioDensity100015002000250030003500400045005000								
46.003.1724.1301400.772.49030.04613172.0258.0344.1430.1516.1602.1688.1774.1860.147.003.2414.1981405.562.51730.04588173.9260.8347.8434.7521.7608.6695.6782.5869.548.003.3094.2662410.302.54420.04563175.8263.6351.5439.4527.3615.1703.0790.9878.849.003.3784.3342414.982.57100.04538177.6266.4355.2444.0532.8621.6710.4799.2888.050.003.4474.4023419.612.59760.04514179.4269.2358.9448.6538.3628.0717.8807.5897.2PSIBARSRatioTempRatioDensity100015002000250030003500400045005000								
47.003.2414.1981405.562.51730.04588173.9260.8347.8434.7521.7608.6695.6782.5869.548.003.3094.2662410.302.54420.04563175.8263.6351.5439.4527.3615.1703.0790.9878.849.003.3784.3342414.982.57100.04538177.6266.4355.2444.0532.8621.6710.4799.2888.050.003.4474.4023419.612.59760.04514179.4269.2358.9448.6538.3628.0717.8807.5897.2PSIBARSRatioTempRatioDensity100015002000250030003500400045005000								
48.003.3094.2662410.302.54420.04563175.8263.6351.5439.4527.3615.1703.0790.9878.849.003.3784.3342414.982.57100.04538177.6266.4355.2444.0532.8621.6710.4799.2888.050.003.4474.4023419.612.59760.04514179.4269.2358.9448.6538.3628.0717.8807.5897.2PSIBARSRatioTempRatioDensity100015002000250030003500400045005000								
49.003.3784.3342414.982.57100.04538177.6266.4355.2444.0532.8621.6710.4799.2888.050.003.4474.4023419.612.59760.04514179.4269.2358.9448.6538.3628.0717.8807.5897.2PSIBARSRatioTempRatioDensity100015002000250030003500400045005000								
50.00 3.447 4.4023 419.61 2.5976 0.04514 179.4 269.2 358.9 448.6 538.3 628.0 717.8 807.5 897.2 PSI BARS Ratio Temp Ratio Density 1000 1500 2000 2500 3000 3500 4000 4500 5000								
PSI BARS Ratio Temp Ratio Density 1000 1500 2000 2500 3000 3500 4000 4500 5000								
· · ·								
Boost Pressure Output Blower Air RPM Flow per Turbo		1000	1500				4500	5000
	Boost Pressure Output Blower Air			RPM	Flow pe	r Turbo		

Generate **Blower / Turbo Flow Map** Driven by Boost Pressure and Density Ratio using Engine Size, Volumetric Efficiency, Temperature, Blower Efficiency, Barometric Pressure, Intercooler Outlet Temperature, and Intercooler Pressure Loss.

```
Engine Size = 280.865 Type Engine = 4-Stroke
Volumetric Efficiency = .850 Blower Efficiency = .750
InterCooler Outlet Temp = 82.500 InterCooler Pressure Loss = 1.500
Number of Turbos = 1
Units for Output Flow = CFM
```

Boost Pressure Output Blower Air IC	Density			ъ	PM	Flow	per Tu	rho	
-	-		1500	2000		3000	-	4000	4500
					2500		3500		
2.0 .138 1.136 84.44 1.083 0.07293 .91		68.3	102.5	136.7	170.8	205.0	239.2	273.3	307.5
	9 1.054	72.8	109.2	145.7	182.1	218.5	254.9	291.3	327.7
	3 1.119	77.3	116.0	154.7	193.3	232.0	270.7	309.3	348.0
	6 1.185	81.8	122.7	163.7	204.6	245.5	286.4	327.3	368.2
6.0 .414 1.408 129.40 1.240 0.06737 1.00		86.3	129.5	172.6	215.8	259.0	302.1	345.3	388.5
7.0 .483 1.476 139.65 1.278 0.06622 1.02		90.8	136.2	181.6	227.1	272.5	317.9	363.3	408.7
8.0 .552 1.544 149.57 1.315 0.06514 1.04		95.3	143.0	190.6	238.3	286.0	333.6	381.3	428.9
9.0 .621 1.612 159.18 1.352 0.06413 1.06		99.8	149.7	199.6	249.5	299.4	349.3	399.3	449.2
10.0 .689 1.680 168.50 1.388 0.06318 1.08		104.3	156.5	208.6	260.8	312.9	365.1	417.2	469.4
11.0 .758 1.749 177.55 1.423 0.06228 1.10		108.8	163.2	217.6	272.0	326.4	380.8	435.2	489.6
12.0 .827 1.817 186.36 1.459 0.06143 1.12		113.3	170.0	226.6	283.3	339.9	396.6	453.2	509.9
13.0 .896 1.885 194.93 1.493 0.06063 1.14		117.8	176.7	235.6	294.5	353.4	412.3	471.2	530.1
14.0 .965 1.953 203.28 1.528 0.05987 1.15		122.3	183.4	244.6	305.7	366.9	428.0	489.2	550.3
15.0 1.034 2.021 211.43 1.562 0.05914 1.17		126.8	190.2	253.6	317.0	380.4	443.8	507.2	570.6
16.0 1.103 2.089 219.38 1.596 0.05845 1.19		131.3	196.9	262.6	328.2	393.9	459.5	525.2	590.8
17.0 1.172 2.157 227.15 1.629 0.05779 1.20	7 1.966	135.8	203.7	271.6	339.5	407.4	475.3	543.2	611.1
18.0 1.241 2.225 234.74 1.662 0.05716 1.22	2 2.031	140.3	210.4	280.6	350.7	420.9	491.0	561.2	631.3
19.0 1.310 2.293 242.17 1.695 0.05655 1.23	7 2.096	144.8	217.2	289.6	362.0	434.4	506.7	579.1	651.5
20.0 1.379 2.361 249.45 1.727 0.05597 1.25	1 2.161	149.3	223.9	298.6	373.2	447.8	522.5	597.1	671.8
21.0 1.448 2.429 256.57 1.759 0.05541 1.26	5 2.226	153.8	230.7	307.6	384.4	461.3	538.2	615.1	692.0
22.0 1.517 2.497 263.55 1.791 0.05488 1.27	9 2.291	158.3	237.4	316.6	395.7	474.8	554.0	633.1	712.2
23.0 1.586 2.565 270.40 1.823 0.05437 1.29	3 2.356	162.8	244.2	325.5	406.9	488.3	569.7	651.1	732.5
24.0 1.655 2.633 277.12 1.854 0.05387 1.30	6 2.421	167.3	250.9	334.5	418.2	501.8	585.4	669.1	752.7
25.0 1.724 2.701 283.71 1.885 0.05339 1.31	9 2.487	171.8	257.7	343.5	429.4	515.3	601.2	687.1	773.0
26.0 1.793 2.769 290.19 1.916 0.05293 1.33	2 2.552	176.3	264.4	352.5	440.7	528.8	616.9	705.1	793.2
27.0 1.862 2.837 296.56 1.946 0.05249 1.34	4 2.617	180.8	271.1	361.5	451.9	542.3	632.7	723.0	813.4
28.0 1.931 2.905 302.81 1.977 0.05206 1.35	7 2.682	185.3	277.9	370.5	463.1	555.8	648.4	741.0	833.7
29.0 1.999 2.973 308.96 2.007 0.05164 1.36	9 2.747	189.8	284.6	379.5	474.4	569.3	664.1	759.0	853.9
30.0 2.068 3.041 315.01 2.037 0.05124 1.38	1 2.812	194.3	291.4	388.5	485.6	582.8	679.9	777.0	874.1
31.0 2.137 3.109 320.97 2.066 0.05085 1.39		198.8	298.1	397.5	496.9	596.3	695.6	795.0	894.4
32.0 2.206 3.177 326.83 2.096 0.05047 1.40	4 2.942	203.2	304.9	406.5	508.1	609.7	711.4	813.0	914.6
33.0 2.275 3.246 332.60 2.125 0.05010 1.41	5 3.007	207.7	311.6	415.5	519.4	623.2	727.1	831.0	934.8
34.0 2.344 3.314 338.29 2.154 0.04974 1.42		212.2	318.4	424.5	530.6	636.7	742.8	849.0	955.1
35.0 2.413 3.382 343.89 2.183 0.04940 1.43		216.7	325.1	433.5	541.8	650.2	758.6	867.0	975.3
36.0 2.482 3.450 349.42 2.212 0.04906 1.44		221.2	331.9	442.5	553.1	663.7	774.3	884.9	995.6
37.0 2.551 3.518 354.86 2.241 0.04873 1.45		225.7	338.6	451.5	564.3	677.2	790.1		1015.8
38.0 2.620 3.586 360.23 2.269 0.04841 1.46		230.2	345.3	460.5	575.6	690.7	805.8	920.9	
39.0 2.689 3.654 365.53 2.297 0.04810 1.47		234.7	352.1	469.5	586.8	704.2	821.5		1056.3
40.0 2.758 3.722 370.76 2.325 0.04780 1.48		239.2	358.8	478.4	598.1	717.7	837.3		1076.5
41.0 2.827 3.790 375.92 2.353 0.04750 1.49		243.7	365.6	487.4	609.3	731.2	853.0		1096.7
42.0 2.896 3.858 381.01 2.381 0.04722 1.50		248.2	372.3	496.4	620.5	744.7	868.8	992.9	
43.0 2.965 3.926 386.04 2.408 0.04693 1.51		252.7	379.1	505.4	631.8	758.1		1010.9	
44.0 3.034 3.994 391.01 2.436 0.04666 1.52		257.2	385.8	514.4	643.0	771.6		1028.8	
45.0 3.103 4.062 395.92 2.463 0.04639 1.53		261.7	392.6	523.4	654.3	785.1		1046.8	
46.0 3.172 4.130 400.77 2.490 0.04613 1.54		266.2	399.3	532.4	665.5	798.6		1040.8	
47.0 3.241 4.198 405.56 2.517 0.04588 1.55		270.7	406.1	541.4	676.8	812.1		1082.8	
48.0 3.309 4.266 410.30 2.544 0.04563 1.56		275.2	412.8	550.4	688.0	825.6		1100.8	
48.0 3.309 4.200 410.30 2.544 0.04503 1.50 49.0 3.378 4.334 414.98 2.571 0.04538 1.57		275.2	412.8	550.4 559.4	699.2	825.0 839.1		1118.8	
49.0 3.378 4.334 414.98 2.571 0.04538 1.57 50.0 3.447 4.402 419.61 2.598 0.04514 1.58		2/9./	419.5	568.4	710.5	852.6		1136.8	
			426.3	2000	2500	3000	3500	4000	4500
			1200		2500 PM				4300
BOOSE FIESSULE OULPUL BIOWEL AIT IC	Density			R	e M	4 TOM	per Tu	100	

Generate **Blower / Turbo Flow Map** Driven by Boost Pressure and Density Ratio using Engine Size, Volumetric Efficiency, Temperature, Blower Efficiency, Barometric Pressure, Intercooler Outlet Temperature, and Intercooler Pressure Loss.

This is the same as the above text screens, but with the "Graph Results" Box checked.

RPM> 1000 to 1 Engine Size = 280. CA3FOR - Register	0000 by 500 365 4-Strake	VE. = .850	Blower Eff	. = . 750 #	pf Turbos =	11	Pressure Ra	8 io ->
CABEOR - Begister	ed in Stan)	Weiss	$\overline{//}$		//		//	7.3
				///				6.6
						/		5.9
								5.2
								4.5
								3.8
								3.1
								2.4
407 814		1628	CF 2035		2849	3256	3663	1.7 4070

$\Box \mathbf{B} \mathbf{S} \mathbf{A}$	C - RPMs Ta	nble ——					
1000	6.9	8000	6.5	15000	6.0	21500	6.0
1500	6.8	8500	6.6	15500	6.0	22000	6.0
2000	6.7	9000	6.7	16000	6.0	22500	6.0
2500	6.6	9500	6.8	16500	6.0	23000	6.0
3000	6.5	10000	6.9	17000	6.0	23500	6.0
3500	6.4	10500	6.0	17500	6.0	24000	6.0
4000	6.3	11000	6.0	18000	6.0	24500	6.0
4500	6.2	11500	6.0	18500	6.0	25000	6.0
5000	6.1	12000	6.0	19000	6.0	25500	6.0
5500	6.0	12500	6.0	19500	6.0	26000	6.0
6000	6.1	13000	6.0	20000	6.0	26500	6.0
6500	6.2	13500	6.0	20500	6.0	27000	6.0
7000	6.3	14000	6.0	21000	6.0	27500	6.0
7500	6.4	14500	6.0				
					Res	iet	Done

Engine Size = 505.000 Type Engine = 4-Stroke Volumetric Efficiency = 1.075 BSAC = 6.100 Number of Turbos = 2 Units for Output Flow = HP from BSAC and lbs/min -- Raised Temperature

Boost Pr	essu	re		RPM		HP ner	r Turbo							
PSI BARS R		1000	1500	2000	2500	3000	3500	4000	4500	5000	5500	6000	6500	7000
.000 .000	1.0	53.30			133.26									
1.470 .101	1.1	58.64			146.59									
2.939 .203	1.2	63.97			159.91									
4.409 .304	1.3	69.30	103.94	138.59	173.24	207.89	242.54	277.19	311.83	346.48	381.13	415.78	450.43	485.07
5.878 .405	1.4	74.63	111.94	149.25	186.57	223.88	261.19	298.51	335.82	373.13	410.45	447.76	485.07	522.4
7.348 .507	1.5	79.96	119.94	159.91	199.89	239.87	279.85	319.83	359.81	399.79	439.76	479.74	519.7	559.7
8.818 .608	1.6	85.29	127.93	170.58	213.22	255.86	298.51	341.15	383.79	426.44	469.08	511.7	554.4	597.0
10.287 .709	1.7	90.62	135.93	181.24	226.55	271.85	317.16	362.47	407.78	453.09	498.40	543.7	589.0	634.3
11.757 .811	1.8	95.95	143.92	191.90	239.87	287.85	335.82	383.79	431.77	479.74	527.7	575.7	623.7	671.6
13.226 .912	1.9	101.28	151.92	202.56	253.20	303.84	354.48	405.12	455.76	506.4	557.0	607.7	658.3	709.0
14.696 1.013					266.52				479.74	533.0	586.4	639.7	693.0	746.3
16.166 1.115					279.85				503.7	559.7	615.7	671.6	727.6	783.6
17.635 1.216					293.18				527.7	586.4	645.0	703.6	762.3	820.9
19.105 1.317					306.50				551.7	613.0	674.3	735.6	796.9	858.2
20.574 1.419					319.83			511.7	575.7	639.7	703.6	767.6	831.6	895.5
22.044 1.520					333.16			533.0	599.7	666.3	732.9	799.6	866.2	932.8
23.514 1.621					346.48			554.4	623.7	693.0	762.3	831.6	900.9	970.1
24.983 1.723					359.81		503.7	575.7	647.7	719.6	791.6	863.5		1007.5
26.453 1.824					373.13		522.4	597.0	671.6	746.3	820.9	895.5		1044.8
27.922 1.925					386.46		541.0	618.3	695.6	772.9	850.2		1004.8	
29.392 2.027					399.79		559.7	639.7	719.6	799.6	879.5		1039.4	
30.862 2.128					413.11		578.4	661.0	743.6	826.2	908.8		1074.1	
32.331 2.229		170.58				511.7	597.0	682.3	767.6	852.9		1023.5		
33.801 2.330		175.91				527.7	615.7	703.6	791.6	879.5		1055.4		
35.270 2.432 36.740 2.533		181.24 186.57				543.7 559.7	634.3 653.0	724.9 746.3	815.6 839.6	906.2		1087.4		
38.210 2.634		191.90				575.7	671.6	746.3	863.5			1119.4		
39.679 2.736		191.90				575.7	690.3	788.9	887.5			1183.4		
41.149 2.837		202.56			506.4	607.7	709.0	810.2				1215.4		
42.618 2.938		202.30			519.7	623.7	709.0	831.6				1247.3		
44.088 3.040		213.22			533.0	639.7	746.3	852.9				1279.3		
45.558 3.141		218.55			546.4	655.6	764.9	874.2				1311.3		
47.027 3.242		223.88			559.7	671.6	783.6		1007.5					
48.497 3.344		229.21			573.0	687.6	802.2		1031.4					
49.966 3.445		234.54			586.4	703.6	820.9		1055.4					
51.436 3.546		239.87			599.7	719.6	839.6		1079.4					

mshaft Information							
Intake			- Exhaust				Duration
Open BTDC 42.5	CenterLine	116.5	Open BBDC	95.5	CenterLine	117.5	 Timing
Close ABDC 95.5	Duration	318.0	Close ATDC	40.5	Duration	320.0	Timing
Cam Lift 0.4	Valve Lift	0.6	Cam Lift	0.4	Valve Lift	0.6	<u>V</u> alve Lift
Rocker Ratio 1.5	Lash	0.024	Rocker Ratio	1.5	Lash	0.03	<u>C</u> am Lift
A.J			1		Commention		D <u>u</u> ration
Advance 0.0 Retarded (-)	Over Lap	83.0	Lobe Separation	117.5	Compressior Ratio	13.59405	Durati <u>o</u> n
Engine Size 326.7256	Number of Cylinders	8	Angle Type		RPM	6500	
Spike Limiter 0.000							
Adv / Ret Timing 0.0	40 🗌 Dots	🗌 0.050 - CQ	U or DYM File	SLD-S	nooth Lift Dat	a 🗌 4.2.0	
Adv / <u>R</u> et Timing Read	*.CAM Data Te	ext Report Cam	Text Repo	rt Valve	Smooth Da Report	ta Graph / Text	
Graph Lift 💿 Int	ake 🔿 Exhaust	Graph Fi	rst G	raph Plus		SG	Quit
C Cam ⊙ Vel C Cam Lift ⊙ Cam fos	⊖ Accel ⊖ Acc Cam ⊖ Can	el O Jerk n fps O Cam	C Valve	ି ^{Vel} ୦ ^V Valve ୦ fi	el Valve O Ao	ccel Accel alve fps Valv	
							🗌 Metric

CAM_INFO

Lobe Separation Angle / Lobe Centerline - Is the amount of degrees between the exhaust centerline and the intake centerline and is the only measurement here in camshaft degrees. In a single camshaft engine this angle is set at the time the camshaft is ground and cannot be changed. This angle will normally vary between 100 to 120 degrees.

Overlap - Is the number of degrees that both the exhaust and intake valves are open at the same time.

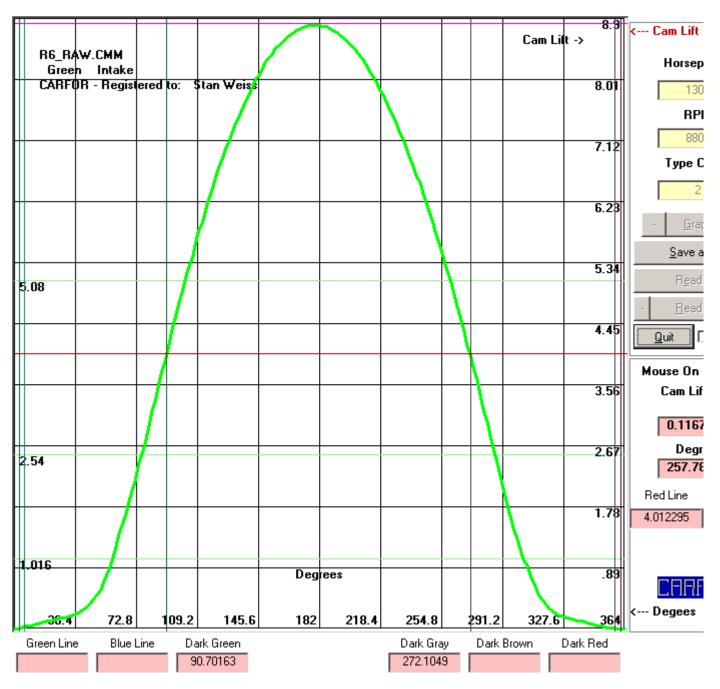
Intake Centerline - Is the number of degrees ATDC at which maximum lift occurs.

Advance / Retard - Is the number of degrees the Intake centerline has been moved. Advancing the camshaft will reduce the centerline and improve mid range torque. Retarding will increase the centerline and improve high-end horsepower.

NOTE: - Calculation like CL or based on CL are only correct if the cam has a symmetrical lobe.

- 1) Calculate Cam Duration, Centerline, and Lobe Separation Angle from Cam Events.
- 2) Calculate Cam Events from Duration, Centerlines.
- 3) Calculate Cam Events from Duration, Intake Centerline, and Lobe Separation Angle.
- 4) Calculate Valve Lift from Cam Lift and Rocker Arm Ratio.
- 5) Calculate Cam Lift from Valve Lift and Rocker Arm Ratio.
- 6) Calculate Intake Duration from Compression Ratio.
- 7) Adjust All Cam Events using Advance / Retard, Duration and Centerlines.
- 8) Adjust All Cam Events using Advance / Retard and Cam Events".
- 9) Calculate Intake Duration from Compression Ratio, Engine Size, Number of Cylinders and RPM.
- 10)Read in (Open) Cam Information from a file. There are many *.cam and *.dyn files on the Internet for use with Dyno Programs. This will Read in (Open) these file and search for cam information.
- 11)Graph Lift Will read in a cam information file *.CMM and Graph lift at valve using Rocker Arm Ratio and Valve Lash.
- 12)Graph First Will read in a cam information file *.CMM and Graph selected function on a clean Graph.
- 82 CARFOR Performance Software by Stan Weiss / World Wide Enterprises

13) Graph Plus - will add a second, third, etc. Graph to the present Graph.

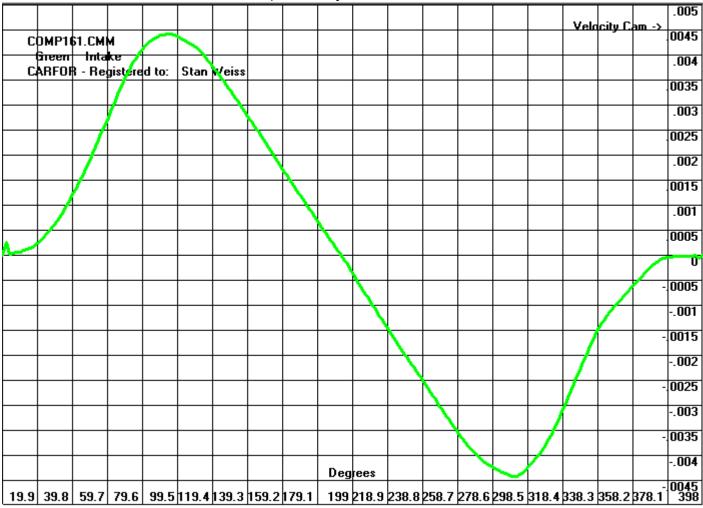

- 14)Text Report Cam will shows Cam Lift, Velocity, Acceleration, and Jerk. If Smooth Graph is checked it will also show a generated smoothed Lift.
- 15)Text Report Valve will shows Valve Lift, Velocity, Acceleration, and Jerk. If Smooth Graph is checked it will also show a generated smoothed Lift. Also valve velocity in fps.

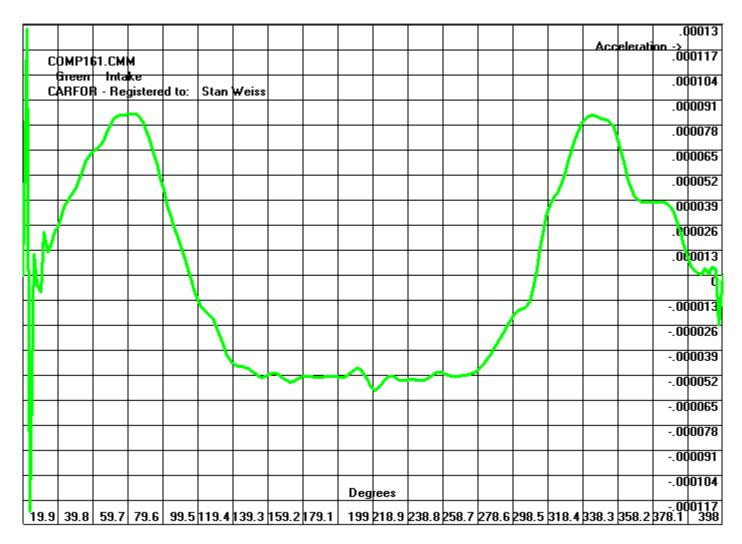
Use the Intake or exhaust radio buttons to select which lobe you want to Graph. When Checked Smooth Graph will use an algorithm to smooth the Graphed data – see below. When 0.040 box is Checked this will draw the line at 0.040" lift instead of 0.050" lift.

Graph Lift at Valve using Rocker Arm Ratio (Range) and Valve Lash Adjusted for ratio change which keeps the seat-to-seat duration the same.

																	alve	itt a	.57
P	рит_0	941.CK	IM I	ontiac	: 400	ci 041	/Thy	d Adv	308-3	20-9-0	50 23	2 240	ICL 11	4 Int	ake				.539
C.	ARFOI	R - Re	gistere	d to:	Stan	₩eiss													.508
		n Bati																	.477
Roc	ker An	n Rati	o = 1.!	55 La	sh = (.02	Blue												.446
		n Rati n Rati						enta											.415
Roc	ker An	n Rati	o = 1.7	Las	h = 0.	07777	Park (ireen											.384
		n Rati n Rati																	.353
		n Nati n Rati																	.322
																			.291
																			.26
					-														.229
.200																			.198
																			.167
				/															.136
																			.105
			/													\mathbf{N}			.074
.050			/																.043
0									Deg	1000									.012
17.5	35	52.5	70	87.5	105	122 5	140	157.5			210	227 5	245	262.5	280	297.5	315	332.5	350

Graph Lift at the Cam with Metric and 0.040 Checked




Graph Lift at the Cam with Different values for "every x degrees = " which show how this profile will look if the duration is increased or decreased.

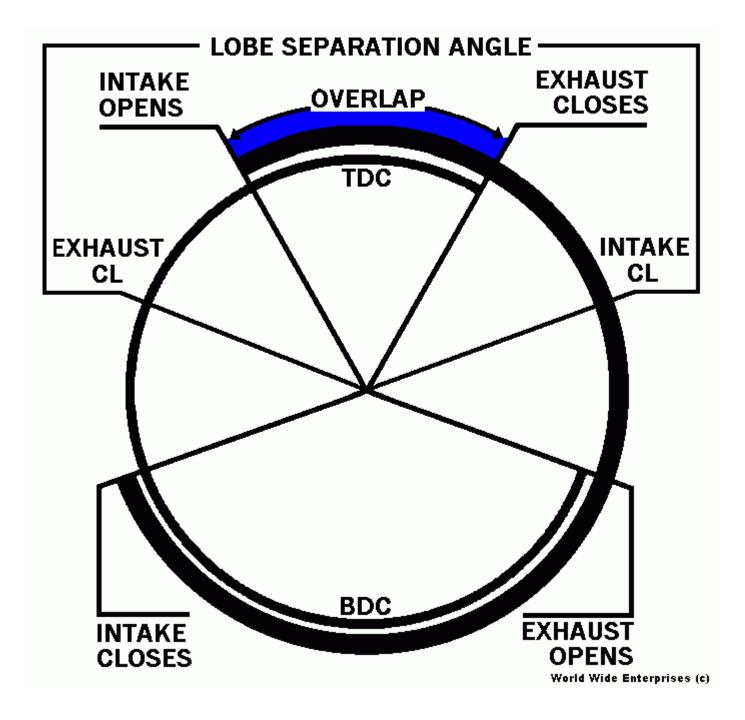
For this Graph I used 1.1 Green Line, 1.05 Red Line, 1.0 Blue Line (Actual Cam Lobe), 0.95 Cyan Line and 0.90 Magenta Line

														Cam	Lift ->	.56
	EST_Z							//								.532
	Green	Inta	ke		-			<u> </u>								
ե	ARFOF	1 - Ke	gistere	d to:	Stan	₩eiss										.504
	T_ZXZ T_ZXZ			ike l ike l			11									.476
TES	T_ZXZ	CMM	Inta	ike (Cyan		┦—									.448
TES	T_ZXZ	CMM	Inta	ike I	Magent	₽ <mark>///</mark>	<u> </u>									
						////										.42
						11										.392
					1	1										.364
					11											.336
					111											.308
					X/T											.28
					1											.252
				#	1											.224
.200			1	17						 						.196
			H	#												.168
			#	\vdash									\mathbb{N}^{-}			.14
.100		11	#													.112
.100		#	#													.084
.050		#	/											\mathcal{H}		.056
19.8	38.5	#	70.0		9 118.8				Deg		 	 				.028

Graph Velocity and Acceleration

Text Report Cam

C:\Program Files\Microsoft Visual Studio\VB98\CARFOR\DEFAULT.CMM


0. (11	INTAKE					
	Cam Lift	Velocity	Acceleration	Jerk	Smooth Lift	
1	0.00000000000		1100010101010	00111		
2	0.0020000000	0.0002000000	0.00002000000	0.0000200000	0.0020000000	
3	0.00500000000	0.0003000000	0.00001000000	-0.0000100000	0.0050000000	
4	0.00700000000	0.0002000000	-0.0000100000	-0.0000200000	0.0070000000	
5	0.01000000000	0.00024329004	-0.00000024868	0.0000004722	0.00943290043	
6	0.01300000000	0.00026406926	0.00000378460	0.0000036888	0.01207359307	
7	0.01600000000	0.00035670996	0.00001765971	0.00000130679	0.01564069264	
8	0.02200000000	0.00065151515	0.00003611289	0.00000173323	0.02215584416	
9	0.03300000000	0.00128441558	0.00005009014	0.0000134444	0.0350000000	
10	0.05000000000	0.00192640693	0.00006137797	0.0000084712	0.05426406926	
11	0.07800000000	0.00257272727	0.00006269541	0.0000000275	0.07999134199	
12	0.11500000000	0.00308484848	0.00005133731	-0.0000083755	0.11083982684	
13	0.14500000000	0.00344632035	0.00003277525	-0.00000142991	0.14530303030	
14	0.18000000000	0.00356839827	0.00001665374	-0.00000178672	0.18098701299	
15	0.21500000000	0.00348744589	-0.00000096325	-0.00000173543	0.21586147186	
16	0.25000000000	0.00336277056	-0.00001494331	-0.00000143380	0.24948917749	
17	0.28100000000	0.00316580087	-0.00002650775	-0.00000113445	0.28114718615	
18	0.31000000000	0.00277532468	-0.00003347014	-0.0000084626	0.30890043290	
19	0.33400000000	0.00238744589	-0.00003895223	-0.0000049230	0.33277489177	
20	0.35000000000	0.00193809524	-0.00004309065	-0.0000026880	0.35215584416	
21	0.36700000000	0.00152554113	-0.00004248609	-0.0000010217	0.36741125541	
22	0.37900000000	0.00108917749	-0.00004166058	-0.0000005517	0.37830303030	
23	0.38500000000	0.00069956710	-0.00004296134	-0.0000000849	0.38529870130	
24	0.38800000000	0.00031688312	-0.00004355616	-0.0000004080	0.38846753247	
25	0.38600000000	-0.00020865801	-0.00004520849	-0.0000012848	0.38638095238	
26	0.38000000000	-0.00067835498	-0.00004519443	-0.0000007109	0.37959740260	
27	0.36900000000	-0.00112034632	-0.00004653567	-0.0000002866	0.36839393939	
28	0.35200000000	-0.00156060606	-0.00004610614	0.0000004933	0.35278787879	
29	0.33200000000	-0.00197229437	-0.00004278368	0.0000013481	0.33306493506	
30	0.30900000000	-0.00243463203	-0.00004240719	0.0000020072	0.30871861472	
31	0.28200000000	-0.00281168831	-0.00003762504	0.0000038179	0.28060173160	
		CARFOR I	Performance Softwar	re by Stan Weiss / W	orld Wide Enterprises - 87	7

32	0.25000000000	-0.00312207792	-0.00003334289	0.0000055586	0.24938095238
33	0.21400000000	-0.00340909091	-0.00002585840	0.0000080782	0.21529004329
34	0.18000000000	-0.00348181818	-0.00001320740	0.00000119450	0.18047186147
35	0.14500000000	-0.00358701299	0.0000034238	0.00000143830	0.14460173160
36	0.11100000000	-0.00339696970	0.00001778434	0.00000174188	0.11063203463
37	0.0820000000	-0.00300952381	0.00003609640	0.00000170908	0.08053679654
38	0.0500000000	-0.00252380952	0.00004969678	0.00000133919	0.05529870130
39	0.03500000000	-0.00187489177	0.00006198122	0.0000075956	0.03654978355
40	0.02400000000	-0.00125281385	0.00005895860	-0.0000004282	0.02402164502
41	0.01700000000	-0.00073419913	0.00004914338	-0.00000085693	0.01667965368
42	0.01400000000	-0.00031471861	0.00003533779	-0.00000130157	0.01353246753
43	0.01100000000	-0.00026666667	0.00001815427	-0.00000157452	0.01086580087
44	0.0090000000	-0.00022077922	0.0000365061	-0.00000138643	0.00865800866
45	0.0070000000	-0.00022987013	-0.00000094788	-0.00000064322	0.00635930736
46	0.0040000000	-0.0003000000	-0.00000701299	-0.00000060651	0.00335930736
47	0.0010000000	-0.0003000000	0.0000000000	0.0000070130	0.00035930736
48	0.00000000000	-0.0001000000	0.00002000000	0.0000200000	-0.00064069264

Text Report Valve

C:\Program Files\Microsoft Visual Studio\VB98\CARFOR\DEFAULT.CMM RA Ratio = 1.5 Lash = 0.0240 RPM = 6500 Smooth Type = SG

	INTAKE			- 1		
-	Valve Lift	Velocity	Acceleration	Jerk	Smooth Lift	Velocity fps
1	0.0000000000					
2	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000
3 4	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000
4 5	0.00000000000000000000000000000000000	0.00000000000 -0.00009545455	0.00000000000 -0.00000212965	0.00000000000000000000000000000000000	0.00000000000000-0.00095454545	0.00000000000 -0.31022727273
5	0.0000000000000000000000000000000000000	0.00002012987	0.00001241890	0.00000082174	-0.00095454545	0.06542207792
6 7	0.0000000000000000000000000000000000000	0.00026168831	0.00001241890	0.00000134757	0.00186363636	0.85048701299
8	0.00900000000	0.00079610390	0.00003502249	0.00000238849	0.00982467532	2.58733766234
9	0.02550000000	0.00186428571	0.00008281005	0.00000238849	0.02846753247	6.05892857143
10	0.0510000000	0.00290324675	0.00009814331	0.00000213170	0.05750000000	9.43555194805
11	0.09300000000	0.00390000000	0.00009719177	-0.00000025329	0.0965000000	12.67500000000
12	0.14850000000	0.00462727273	0.00007776325	-0.00000023329	0.1427727272727	15.03863636364
13	0.19350000000	0.00516948052	0.00004804717	-0.00000233089	0.19446753247	16.80081168831
14	0.2460000000	0.00535259740	0.00002376455	-0.00000233089	0.24799350649	17.39594155844
15	0.29850000000	0.00523116883	-0.00002378433	-0.00000259259	0.30030519481	17.00129870130
16	0.3510000000	0.00504415584	-0.00002204307	-0.00000239239	0.35074675325	16.39350649351
17	0.39750000000	0.00474870130	-0.00003976162	-0.00000166232	0.39823376623	15.43327922078
18	0.44100000000	0.00416298701	-0.00005020521	-0.00000125816	0.439863636363	13.52970779221
19	0.47700000000	0.00358116883	-0.00005842835	-0.00000074602	0.47567532468	11.63879870130
20	0.50100000000	0.00290714286	-0.00006463597	-0.00000041335	0.50474675325	9.44821428571
20	0.52650000000	0.00228831169	-0.00006372913	-0.00000041333	0.52762987013	7.43701298701
21	0.54450000000	0.00163376623	-0.00006249086	-0.00000014987	0.54396753247	5.30974025974
23	0.55350000000	0.00104935065	-0.00006444201	-0.00000001273	0.55446103896	3.41038961039
23	0.5580000000	0.00047532468	-0.00006533423	-0.00000001273	0.55921428571	1.54480519481
24	0.55500000000	-0.00031298701	-0.00006781273	-0.00000019272	0.55608441558	-1.01720779221
26	0.54600000000	-0.00101753247	-0.00006779165	-0.00000019272	0.54590909091	-3.30698051948
20	0.52950000000	-0.00168051948	-0.00006980351	-0.00000004299	0.52910389610	-5.46168831169
28	0.50400000000	-0.00234090909	-0.00006915922	0.00000007399	0.50569480519	-7.60795454545
29	0.47400000000	-0.00295844156	-0.00006417552	0.000000020222	0.47611038961	-9.61493506494
30	0.43950000000	-0.00365194805	-0.00006361078	0.00000020222		-11.86883116883
31	0.39900000000	-0.00421753247	-0.00005643757	0.00000057832		-13.70698051948
32	0.35100000000	-0.00421755247	-0.00005001434	0.00000084334		-15.22012987013
33	0.29700000000	-0.00511363636	-0.00003878760	0.00000120262		-16.61931818182
34	0.24600000000	-0.00522272727	-0.00001956316	0.00000120202		-16.9738636363636
35	0.19350000000	-0.00538051948	0.00000030697	0.00000212601		-17.48668831169
36	0.14250000000	-0.00509545455	0.00002557654	0.00000212001		-16.56022727273
37	0.09900000000	-0.00451428571	0.00005324338	0.00000259216		-14.67142857143
38	0.05100000000	-0.00381298701	0.00007505594	0.00000239210		-12.39220779221
39	0.02850000000	-0.00283506494	0.00009531484	0.00000133006	0.03083766234	-9.21396103896
40	0.01200000000	-0.00182857143	0.00009279530	0.0000015257	0.01255194805	-5.94285714286
41	0.001200000000	-0.00096428571	0.00008089194	-0.00000102551	0.00290909091	-3.13392857143
42	0.0000000000000000000000000000000000000	-0.00026233766	0.00006207848	-0.00000182941	0.00028571429	-0.85259740260
43	0.000000000000	-0.00010779221	0.00003600888	-0.00000236417	-0.00079220779	-0.35032467532
44	0.0000000000000000000000000000000000000	0.00006103896	0.00001499803	-0.00000194673	-0.00018181818	0.19837662338
45	0.000000000000	0.00008636364	0.00000158093	-0.00000137283	0.00068181818	0.28068181818
45	0.0000000000000000000000000000000000000	0.000000000000	-0.00000863636	-0.00000102173	0.00068181818	0.00000000000
47	0.000000000000	0.000000000000	0.000000000000	0.00000086364	0.00068181818	0.000000000000
48	0.0000000000000000000000000000000000000	0.00000000000	0.00000000000	0.0000000000000000000000000000000000000	0.00068181818	0.0000000000000000000000000000000000000
10		5.0000000000000000000000000000000000000	5.0000000000000000000000000000000000000	5.0000000000000000000000000000000000000	0.00000101010	5.0000000000000000000000000000000000000

Air / Fuel / Exha		r			-AREANOLID.			and a second
Air Fuel Flow	v Details —			0-1-0				Carb Size
Engine Size	326.7256	Carb Size	650	Carb Size Race	801	Vac @ WOT	0.9877	Carb Size
RPM	6500	Volumetric Efficiency	0.85	Mass Air Flow	59.0	Barometric	29.92	Carb Size w BP
Horsepower	555.0	Number of Cylinders	8	Temperature Mass Air Flow	.274	Pressure Mass Air Flow lbs/hr	2176.8	Estim Airflow
Blower Pressure	0.0	Port Diam	2.25	kg/s		Mass Fuel Flow lbs/hr	203.8	Estim Airflow
Air Fuel Ratio / Lambda Value	12.5	Intake Runner Len	7.55	Calculate	Calcu		alculate RPM	Estim Airflow
RPM Max HP	6500	Peak Torque RPM	5900	Text Rep A/F			ext Rep RPM	Estimate HP
Comp Ratio	13.59405	Alcohol Horsepower	575	Re ○ Org ○ SI ○ SI		ະັດSR ດ SF sI ດ QI		Estimate HP
Set Lambda		BSFC	.5	Air Flow				Es <u>t</u> imate HP
Air Flow Con Old Depression	version 5.0	New Depression	28.0	Intake Flow	300.0	Exhaust Flow	210.0	Esti <u>m</u> ate HP
[⊙ Inch Water	⊖ ^{mm} Water	New Air Flow	248.475	Exhaust Ratio		Tilan Uninka		Intake Len
Old Air Flow	105.0 O M^3/s	Convert	Airflow	Filter Sq	14.0 84.83	Filter Height Filter Size	1.929 Filte <u>r</u> Size	I <u>n</u> take Len
	O MP-5/S			Inches	01.00	- inter bitte	, net one	<u>G</u> as -> Alcohol
		Analyze	Flow Data	Exhaust / Header	EFI - Sizir	Valve N	1ach Sizing	Estimate VE
	Sub Scre	ens Port	Time Area	Port Flow / CSA		Calc	ulators	Quit
								Estimate BSFC

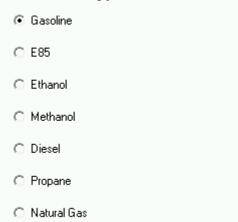
AIR FUEL

The **Flow Rate** of an Injector is usually in Pounds of fuel it can flow per hour at a fuel pressure of 43.5 PSI (this pressure may vary with the manufacturer).

The general rule of thumb is that it takes about (.5) 1/2 pounds of fuel to make 1 HP for a naturally aspirated motor and .6 pounds for a Turbo motor. This is your Brake Specific Fuel Consumption – **BSFC**. More efficient (racing) engines will have a lower BSFC (more HP from a pound of fuel) less efficient engines will have a higher BSFC.

The **Duty Cycle** represents what percent of the time the injector is open. Max normally is in the 80-90% range. **General Note** on fuel pressure.

a) All fuel pumps' capacity (volume) decreases with an increase in fuel pressure.


- b) If your engine is running boost, the fuel pressure needs to be the amount of boost (PSI) higher fuel pressure wanted plus boost pressure equals fuel pressure needed. In other words the rated flow at "X" PSI is the differential pressure across the injector. A good way to control this is use a Boost adjustable regulator.
 - 1) Convert Airflow from one Depression to a different Depression Using Old Depression, New Depression, and Old Airflow.
 - 2) Estimate Intake and Exhaust Airflow and RPM of Max HP from Horsepower, Intake Exhaust Ratio and Number of Cylinders Pro Stock Style.
 - 3) Estimate Intake and Exhaust Airflow and RPM of Max HP from Horsepower, Intake Exhaust Ratio and Number of Cylinders Racing Only Engine.
 - 4) Estimate Intake and Exhaust Airflow and RPM of Max HP from Horsepower, Intake Exhaust Ratio and Number of Cylinders Street Engine.
 - 5) Estimate Horsepower from Intake Airflow and Number of Cylinders Pro Stock Style.
- 6) Estimate Horsepower from Intake Airflow and Number of Cylinders Racing Only Engine.
- 7) Estimate Horsepower from Intake Airflow and Number of Cylinders Street Engine.
- 8) Estimate Horsepower from Intake Airflow and Number of Cylinders Using AFR Formula as seen in many magazines.
- 9) Calculate Carburetor Size in CFM. Using Engine Size, RPM, and Volumetric Efficiency.

90 - CARFOR Performance Software by Stan Weiss / World Wide Enterprises

- 10)Calculate Carburetor Size in CFM. Using Engine Size, RPM, Blower Pressure, and Volumetric Efficiency. Also calculates a Race Carburetor Size in CFM, which also uses User entered vacuum @ WOT.
- 11)Estimate Intake Runner Length using Engine Size, Peak Torque RPM and Port Diameter.
- 12)Estimate Intake Runner Length using Peak HP RPM.
- 13) Estimate Horsepower from running Alcohol over gas using Horsepower.
- 14)Estimate VE / Volumetric Efficiency from Horsepower, Engine Size, RPM and Compression Ratio.
- 15)Estimate Header Tube Length using Cubic Inches, RPM, Number of Cylinders and Tube Diameter.
- 16) Estimate Header Tube Length using Peak HP RPM.
- 17)Estimate Header Tube Optimum Diameter using Engine Size, RPM, Number of Cylinders, and Tube Length.
- 18) Estimate Header Tube Optimum Diameter using Engine Size, Peak Torque RPM, and Number of Cylinders.
- 19) Estimate Header Tube Optimum Inside Diameter using Exhaust Flow at Max lift.
- 20)Estimate Affect RPM from Header Tube Diameter and Length, Engine Size and Number of Cylinders.
- 21) Estimate Peak Torque RPM from Header Tube Diameter, Engine Size and Number of Cylinders.
- 22)Estimate Minimum Collector Length using Engine Size, Number of Cylinders, and Collector Diameter.
- 23)Calculate Air Filter Size Paper Element using Engine Size, RPM, and Filter Diameter.
- 24)Calculate Air Filter Size Foam Element using Engine Size, RPM, and Filter Diameter.
- 25) Estimate Exhaust/Muffler(s) airflow needed for no Horsepower lose using Horsepower.
- 26)Calculate Engine Mass Air Flow. Using Engine Size, RPM, Volumetric Efficiency, Inlet Temperature, Barometric Pressure and Blower Pressure. Also Mass Fuel Flow using Air Fuel Ratio.
- 27)Calculate VE / Volumetric Efficiency Using Engine Mass Air Flow, Engine Size, RPM, Inlet Temperature, Barometric Pressure.
- 28) Calculate RPM Using VE / Volumetric Efficiency, Engine Mass Air Flow, Engine Size, Inlet Temperature, Barometric Pressure.
- 29) Text Report A/F Calculate Engine Mass Air / Fuel Flow. Using Engine Size, RPM (Varying), Volumetric Efficiency (Varying), Air/Fuel Ratio (Varying), Inlet Temperature, Barometric Pressure and Blower Pressure.
- 30) Text Report BSFC Calculate Engine Mass Air / Fuel Flow / HP. Using Engine Size, RPM (Varying), Volumetric Efficiency (Varying), Air/Fuel Ratio, BSFC (Varying), Inlet Temperature, Barometric Pressure and Blower Pressure.

Select Lambda Fuel – If the air fuel ratio is less than or equal to 1.5 then it will be treated as a lambda value and used along with the select fuel type in place of the air / fuel ratio in all calculations.

-Select Fuel Type for Use with Lambda Value –

Text Report A/F Output

Engine	Size = 3	326.73 -	Barometri	c Pressur	e = 29.92	- Temp	erature =	59.00	
						\ /			
A/F Rati			11.900	12.100	12.300	12.500	12.700	12.900	13.100
VE%	Air	Air	Fuel	Fuel	Fuel	Fuel	Fuel	Fuel	Fuel
	kgs/s	lbs/hr	lbs/hr	lbs/hr	lbs/hr	lbs/hr	lbs/hr	lbs/hr	lbs/hr
3500 -									
0.6500	0.1244	987.005	82.942	81.571	80.244	78.960	77.717	76.512	75.344
0.6700	0.1282	1017.374	85.494	84.080	82.713	81.390	80.108	78.866	77.662
0.6900	0.1320	1047.743	88.046	86.590	85.182	83.819	82.499	81.220	79.980
0.7100	0.1358	1078.113	90.598	89.100	87.651	86.249	84.891	83.575	82.299
0.7300	0.1397	1108.482	93.150	91.610	90.120	88.679	87.282	85.929	84.617
0.7500	0.1435	1138.851	95.702	94.120	92.590	91.108	89.673	88.283	86.935
0.7700	0.1473	1169.221	98.254	96.630	95.059	93.538	92.065	90.637	89.253
0.7900	0.1511	1199.590	100.806	99.140	97.528	95.967	94.456	92.991	91.572
0.8100	0.1550	1229.959	103.358	101.650	99.997	98.397	96.847	95.346	93.890
0.8300	0.1588	1260.329	105.910	104.159	102.466	100.826	99.238	97.700	96.208
0.8500	0.1626	1290.698	108.462	106.669	104.935	103.256	101.630	100.054	98.527
0.8700	0.1665	1321.068	111.014	109.179	107.404	105.685	104.021	102.408	100.845
0.8900	0.1703	1351.437	113.566	111.689	109.873	108.115	106.412	104.763	103.163
0.9100	0.1741	1381.806	116.118	114.199	112.342	110.545	108.804	107.117	105.481
0.9300	0.1779	1412.176	118.670	116.709	114.811	112.974	111.195	109.471	107.800
0.9500	0.1818	1442.545	121.222	119.219	117.280	115.404	113.586	111.825	110.118
0.9700	0.1856	1472.914	123.774	121.728	119.749	117.833	115.978	114.179	112.436
0.9900	0.1894	1503.284	126.326	124.238	122.218	120.263	118.369	116.534	114.754
1.0100	0.1932	1533.653	128.878	126.748	124.687	122.692	120.760	118.888	117.073
1.0300	0.1971	1564.023	131.430	129.258	127.156	125.122	123.151	121.242	119.391
1.0500	0.2009	1594.392	133.983	131.768	129.625	127.551	125.543	123.596	121.709
3700 -	RPM								

7500 - RPM

İ

7300 = K	EM								
0.6500	0.2665	2115.010	177.732	174.794	171.952	169.201	166.536	163.954	161.451
0.6700	0.2747	2180.087	183.201	180.172	177.243	174.407	171.660	168.999	166.419
0.6900	0.2829	2245.164	188.669	185.551	182.534	179.613	176.785	174.044	171.387
0.7100	0.2911	2310.241	194.138	190.929	187.825	184.819	181.909	179.088	176.354
0.7300	0.2993	2375.319	199.607	196.307	193.115	190.025	187.033	184.133	181.322
0.7500	0.3075	2440.396	205.075	201.686	198.406	195.232	192.157	189.178	186.290
0.7700	0.3157	2505.473	210.544	207.064	203.697	200.438	197.281	194.223	191.257
0.7900	0.3239	2570.550	216.013	212.442	208.988	205.644	202.406	199.267	196.225
0.8100	0.3321	2635.627	221.481	217.820	214.279	210.850	207.530	204.312	201.193

92 - CARFOR Performance Software by Stan Weiss / World Wide Enterprises

0.8300 0.8500 0.8700 0.9100 0.9300 0.9500 0.9700 0.9900 1.0100 1.0300	0.3403 0.3485 0.3567 0.3649 0.3731 0.3813 0.3895 0.3977 0.4059 0.4141 0.4223	2700.705 2765.782 2830.859 2895.936 2961.014 3026.091 3091.168 3156.245 3221.322 3286.400 3351.477	226.950 232.419 237.887 243.356 248.825 254.293 259.762 265.231 270.699 276.168 281.637	223.199 228.577 233.955 239.334 244.712 250.090 255.468 260.847 266.225 271.603 276.982	219.569 224.860 230.151 235.442 240.733 246.024 251.314 256.605 261.896 267.187 272.478	216.056 221.263 226.469 231.675 236.881 242.087 247.293 252.500 257.706 262.912 268.118	212.654 217.778 222.902 228.026 233.151 238.275 243.399 248.523 253.647 258.772 263.896	209.357 214.402 219.446 224.491 229.536 234.581 239.625 244.670 249.715 254.760 259.804	206.161 211.128 216.096 221.064 226.032 230.999 235.967 240.935 245.902 250.870 255.838
1.0300 1.0500	0.4223 0.4305	3351.477 3416.554	281.637 287.105	276.982 282.360	272.478 277.769	268.118 273.324	263.896 269.020	259.804 264.849	255.838 260.806

Text Report BSFC Output

Engine Size = 326.73 - Air / Fuel Ratio = 12.500 Barometric Pressure = 29.92 - Temperature = 59.00

							\	17			
BSFC				.420	.440	.460	.480	.500	.520	.540	.560
.580	• • •		T	5454	5454	5454	5454	5454	5454	5454	5474
VE% BSFC	Air	Air	Fuel	BSFC	BSFC						
BBFC	kqs/s	lbs/hr	lbs/hr	HP	HP						
HP	9										
3500 -	RPM										
0.6500	0.1244	987.005	78.960	188.00	179.46	171.65	164.50	157.92	151.85	146.22	141.00
136.14	0 1000	1019 294	81.390	102 70	184.98	176 03	160 56	160 70	156 50	150 70	145.34
0.6700 140.33	0.1282	1017.374	01.390	193.79	104.90	176.93	169.56	162.78	156.52	150.72	143.34
0.6900	0.1320	1047.743	83.819	199.57	190.50	182.22	174.62	167.64	161.19	155.22	149.68
144.52											
0.7100	0.1358	1078.113	86.249	205.35	196.02	187.50	179.69	172.50	165.86	159.72	154.02
148.71		1100 100			001 54	100 50		100.00	1	1.6.4. 0.0	450 05
0.7300 152.89	0.1397	1108.482	88.679	211.14	201.54	192.78	184.75	177.36	170.54	164.22	158.35
0.7500	0.1435	1138.851	91.108	216.92	207.06	198.06	189.81	182.22	175.21	168.72	162.69
157.08											
0.7700	0.1473	1169.221	93.538	222.71	212.59	203.34	194.87	187.08	179.88	173.22	167.03
161.27											
0.7900 165.46	0.1511	1199.590	95.967	228.49	218.11	208.62	199.93	191.93	184.55	177.72	171.37
0.8100	0.1550	1229.959	98.397	234.28	223.63	213.91	204.99	196.79	189.22	182.22	175.71
169.65	0.1000	1119.999	50.557	201120	223.03	210191	201000	1901/9	109111	101111	1,2,1
0.8300	0.1588	1260.329	100.826	240.06	229.15	219.19	210.05	201.65	193.90	186.72	180.05
173.84											
0.8500	0.1626	1290.698	103.256	245.85	234.67	224.47	215.12	206.51	198.57	191.21	184.39
178.03 0.8700	0.1665	1321.068	105.685	251.63	240.19	229.75	220.18	211.37	203.24	195.71	188.72
182.22	0.1005	1321.000	105.005	251.05	210.19	223.15	220.10	211.57	203.24	195.71	100.72
0.8900	0.1703	1351.437	108.115	257.42	245.72	235.03	225.24	216.23	207.91	200.21	193.06
186.41											
0.9100	0.1741	1381.806	110.545	263.20	251.24	240.31	230.30	221.09	212.59	204.71	197.40
190.59 0.9300	0.1779	1412.176	112.974	268.99	256.76	245.60	235.36	225.95	217.26	209.21	201.74
194.78	0.1//9	1412.170	112.9/4	200.99	250.70	245.00	235.30	223.95	21/.20	209.21	201.74
0.9500	0.1818	1442.545	115.404	274.77	262.28	250.88	240.42	230.81	221.93	213.71	206.08
198.97											
0.9700	0.1856	1472.914	117.833	280.56	267.80	256.16	245.49	235.67	226.60	218.21	210.42
203.16	0 1 0 0 4	1503 304	100 000	286 24	072 20	261 44	250 55	240 52	001 07	222 71	014 75
0.9900 207.35	0.1894	1503.284	120.263	286.34	273.32	261.44	250.55	240.53	231.27	222.71	214.75
1.0100	0.1932	1533.653	122.692	292.12	278.85	266.72	255.61	245.38	235.95	227.21	219.09
211.54											
1.0300	0.1971	1564.023	125.122	297.91	284.37	272.00	260.67	250.24	240.62	231.71	223.43
215.73		1504 000	400								
1.0500 219.92	0.2009	1594.392	127.551	303.69	289.89	277.29	265.73	255.10	245.29	236.21	227.77
219.92											

3700 - RPM

Sub Screens - They will pop-up when their button is clicked.

Analyze Air Flow Data Form.

This will calculate the average Velocity at the valve throat if CSA % of valve size box is checked, and discharge coefficients for each valve lift and port flow cfm using the valve size, the valve stem size, and the throat CSA. How is CSA calculated? Valve Diameter * Percent CSA is used to calculate throat CSA. Than the Valve Stem CSA is calculated from Valve Stem Diameter and this is subtracted from the throat CSA.

If CSA in Sq Inches box is checked it will use the value enter for CSA subtracting the Value calculated for the Valve Stem CSA to calculate the average Velocity at that CSA location of the port. **NOTE:** To just use the CSA value entered Set Valve Stem Diameter to zero. This can be used to see how the average velocity will vary through the port as the CSA changes.

Discharge Coefficient - Is the ratio of the actual flow to the theoretical flow through an area defined by the valve diameter * PI * valve lift (Curtain / Window Area).

Read in (Open) Flow Information from a file. There are many *.flw files on the Internet for use with Dyno Programs. **Note** these file do not have valve stem diameter or CSA information. If the flow numbers are at a depression other than 28 inches of water they will be converted to 28 inches of water.

Options:

Original, which does Velocity at the Throat area and Discharge Coefficient at the Curtain Area.

Velocity and Discharge Coefficient at Curtain Area.

Velocity and Discharge Coefficient at Throat Area.

Velocity and Discharge Coefficient at Valve Area.

CFM Flow per Sq. Inch at Throat Area and at Valve Area.

EFI – Sizing.

Calculate EFI Injector Size and Fuel Pump Flow needed from Horsepower, BSFC, Number of Injectors and Duty Cycle.

Calculate Max Horsepower from EFI Injector Size, Fuel Pressure (Rated), New Fuel Pressure (Running) BSFC, Duty Cycle, and Number of Injectors.

NOTE: If you have not changed fuel pressure set New Fuel Pressure the same as Fuel Pressure.

Calculate change in Injector Flow Rating from Fuel Pressure Change, using Fuel Pressure, New Fuel Pressure, and Injector Size.

Calculate needed Fuel Pressure Change for Desired Injector Flow Rate from Injector Size, New Injector Size and Fuel Pressure.

Estimate Fuel Flow needed for a given Engine Size, RPM, Air Fuel Ratio and Volumetric Efficiency.

Estimate Throttle Body Flow in CFM, at 28 inches of water. Using Engine Size, Rpm, and Volumetric Efficiency – If you do not know the Volumetric Efficiency then use a VE of 1.

Calculate Pulse Width in Milliseconds From Duty Cycle and RPM.

Calculate Duty Cycle From Pulse Width in Milliseconds and RPM.

Valve Mach Sizing.

Calculate Mach Number and Velocity From Bore, Stroke, Valve Diameter, Valve Lift and RPM.

Calculate RPM From Bore, Stroke, Valve Diameter, Valve Lift and Mach Number.

Calculate Valve Lift From Bore, Stroke, Valve Diameter, Mach Number and RPM.

Calculate Valve Diameter From Bore, Stroke, Mach Number, Valve Lift and RPM.

Calculate Mach Number (CSA) and Velocity From Bore, Stroke, CSA, and RPM.

Calculate CSA From Velocity, Bore, Stroke, and RPM.

Calculate Mach Number (CD) and Velocity From Bore, Stroke, Valve Size, Coefficient of Discharge, and RPM.

Graph Mach Number (CD) From Bore, Stroke, Valve Size, Coefficient of Discharge, and RPM.

Graph Velocity (CD) From Bore, Stroke, Valve Size, Coefficient of Discharge, and RPM.

Helmholtz Tuning

Calculates RPM (Peak Torque) From Bore, Stroke, Length - Port + Runner, CSA, Compression Ratio, and Speed of Sound.

Calculate Length - Port + Runner From Bore, Stroke, RPM (Peak Torque), CSA, Compression Ratio, and Speed of Sound.

Graph Length - Port + Runner Varying CSA From Bore, Stroke, RPM (Peak Torque), CSA, Compression Ratio, and Speed of Sound.

H Factor - I use 77 in my calculations. There are a number of online calculators and spreadsheets that use 80. I have added this option so the user can use 80 or any other number they want.

Port Time Area.

Calculate Port Time Area in milliseconds in cm² and cm²/cc for each user supplied lift and duration numbers, bore, stroke, intake valve size, exhaust valve size and RPM.

Port Time Area 2.

Calculate Port Time Area in milliseconds in cm² and cm²/cc and cylinder head flow at each valve lift point, piston travel/position and cylinder volume, vertical and horizontal valve lift. Open and close points, duration numbers, area, at different standard lift points. Using user supplied lift and, bore, stroke, intake valve size, exhaust valve size, Intake rocker arm ratio, exhaust rocker arm ratio, intake valve lash, exhaust valve lash, cylinder head flow, valve incline angle and RPM.

Note: – There maybe times due to the amount of valve lift points that this report generates more data than can be displayed on the screen. The program does generated all of the data and if you save the data to a "PRT" file and open that "PRT" file with Windows Notepad you will be able to see all of that data.

Get a starting points for Degrees BTDC and Degrees BBDC:

(Total Intake degree / 2) - ICL = BTDC

Total Exhaust degree - ((Total Exhaust degree / 2) - ECL) = BBDC

Graphing Options

Flow – Graph Cylinder head flow against cam / crank degrees

Cur DC – Graph Curtain area DC against cam / crank degrees

Cur Area – Graph Curtain / Flow Area against cam / crank degrees

Time Area – Graph Time Area against cam / crank degrees

Time Area/cc – Graph Time Area/cc per cylinder against cam / crank degrees

Lift – Graph Cam or Valve Lift by adjusting Rocker Arm Ratio and Lash against crank degrees

Lift Vert – Graph Valve Vertical Lift (Using valve angle) against crank degrees

Lift Horiz – Graph Valve Horizontal Lift (Using valve angle) against crank degrees

Piston Travel – Graph Piston Travel against crank degrees this can be modified by Valve to Piston Clearance @ TDC. **NOTE: -** Valve to Piston Clearance @ TDC is measured @ TDC with both valves closed - Not overlap TDC.

Graph Zoom In Scale Size – Lets the User Zoom In the Graph area around TDC in greater detail.

Cur Vel – Graph Curtain Velocity (Cylinder head flow) against cam / crank degrees.

Throat Vel – Graph Throat Velocity (Cylinder head flow) against cam / crank degrees.

Min CSA Vel – Graph Minimum CSA Velocity (Cylinder head flow) against cam / crank degrees.

Piston Flow – Graph Piston Flow Demand CFM – Note this only works when using the Graph Plus button. Note: These only works when using the Graph Plus button.

Piston Velocity – Graph Piston Velocity.

Piston Acceler – Graph Piston Acceleration.

Piston Vel / Acc Scale – Lets the User Scale the Piston Velocity or Acceleration.

By using the Graph button you can create a new Graph. Using the Graph Plus button lets the user plot multiple images on the same Graph. As an example you could Graph Lift, Lift Vert, and Piston Travel on the same Graph.

Gra	aphing (Options —
ΘF	low	C Lift
୍ର	Cur DC	C Lift Vert
\circ	Cur Area	C Lift Horiz
	Fime Area	 Piston Travel
P	Fime Area/cc	Graph Zoom In Scale Size
୍ର	Cur Vel	-
- E I - 1	Throat /el	□ 360-360
\odot	lin CSA V	/el
	Piston Vel	w - Plus ONLY locity - Plus celer - Plus
nee		- h
	Gra	pri
	Graph	Plus
	Dor	
	<u>R</u> ead *.F	Added ^{ELW File} 4.9.1

Port Flow / CSA.

Calculate Port characteristics using each user supplied information and valve sizing information based on selected option.

- 1) Calculate Intake and Exhaust Choke RPM, CFM @ 28 Inches, CSA @ 300 fps velocity, and Velocity @ User CSA this uses RPM Max HP, Volumetric Efficiency from left screen.
- 2) Get Valve Size, Valve Stem Size, Throat Information and Number of Valves.
- 3) Graph Intake or Exhaust Choke RPM, CFM @ 28 Inches, CSA @ 300 fps velocity, and Velocity @ User CSA Based on selected Graph Options.

Graph Options:

Intake CFM on Y-Axis, Lift on X-Axis against VE. Exhaust CFM on Y-Axis, Lift on X-Axis against VE. Intake CSA @ 300 fps on Y-Axis, Lift on X-Axis against VE. Exhaust CSA @ 300 fps on Y-Axis, Lift on X-Axis against VE. Intake Velocity on Y-Axis, Lift on X-Axis against VE. Exhaust Velocity on Y-Axis, Lift on X-Axis against VE. Intake Choke RPM on Y-Axis, Lift on X-Axis against VE. Exhaust Choke RPM on Y-Axis, Lift on X-Axis against VE. Intake Choke RPM on Y-Axis, Lift on X-Axis against VE. Exhaust Choke CSA on Y-Axis, FPS on X-Axis against VE. Intake Choke CSA on Y-Axis, FPS on X-Axis against VE. Intake CSA @ USER entered fps on Y-Axis, Lift on X-Axis against VE. Exhaust CSA @ USER entered fps on Y-Axis, Lift on X-Axis against VE.

Calculators.

Calculate port CSA from its width, height, and corner radius Calculate port ACSA from its Volume in cc's and the port centerline length Calculate port FPS from its CFM and CSA Calculate port CFM from its FPS and CSA Calculate port CSA from its CFM and FPS Calculate Port Taper from Small End Diameter, Large End Diameter and Port Length Calculate Port Length from Small End Diameter, Large End Diameter and Port Taper Calculate Large End Diameter from Small End Diameter, Port Length and Port Taper

Taper here means the angle between the port centerline and one side at the small end. Side length - is the length from the end of the small diameter to the end of the large diameter (diagonal).

-Calculato Port CS			<u>D</u> one
Port Height	1.95	Port Width 1.5	Top Left .15
Top Right Arc	0.25	Bottom Left Arc 0.375	Arc Bottom Right Arc
Port CSA	2.9129	Diameter 1.914	Calculate CSA
Port Ave	erage CS	A	Port Avg
Port cc's	165.5	Port 5.168 Length	CSA 1.9542 Diameter 1.577
Calculate	Port cc's	Calc Port Length	Calculate ACSA
	5 / CFM /	CSA	
Air Speed / Port	277.33	CFM 312	CSA 2.7
Velocity			Diameter 1.854
Calculat	e FPS	Calculate CFM	Calcualte CSA
Port Tap	oer —		
Small End Diameter	2.0	Large End 4.0 Diameter	Taper 2.436 Degrees
Port Length	23.5	Side 23.52 Length	
Calculate	Taper	Calculate Length	Calculate Large End

-Air Flow Details		Intak	_			Exhaust		
 Original Curtain 	Valve Lift	Flow CFM @ Test	e Velocity @ Throat fos	Discharge Coefficient	Valve Lift	Flow CFM @ Test	Velocity @ Throat fps	Discharge Coefficier
C Throat	.100	85	79.618	0.917681	. 100	66	100.674	0.89959
C Valve	.200	166	155.488	0.896089	.200	114	173.891	0.77692
C CFM Sq. In	.300	229	214.499	0.824114	.300	168	256.261	0.76329
Graph CFM	.400	294	275.383	0.793524	.400	215	327.952	0.73262
Graph Plus	.500	350	327.837	0.755738	.500	238	363.036	0.64880
Graph Int fps	.550	400	374.671	0.785182	.550	255	388.967	0.63194
Graph Exh fps	.600	425	398.088	0.764734	.600	266	405.746	0.60427
Graph Int DC	.650	430	402.771	0.714214	.650	280	427.101	0.5871
	.700	435	407.455	0.67091	.700	285	434.728	0.55494
Graph Exh DC	.750	437	409.328	0.629062	.750	290	442.354	0.52703
Graph Int Sq Inch	.800	439	411.201	0.592444	.800	292	445.405	0.49750
Graph Exh Sq Inch	.850	440	412.138	0.558865	.850	291	443.880	0.46663
	.900	438	410.265	0.525418	.900	0	.000	0.0
Export Flow Data	1.00	0	.000	0.0	1.00	0	.000	0.0
	1.100	0	.000	0.0	1.100	0	.000	0.0
Text Report 2	1.200	0	.000	0.0	1.200	0	.000	0.0

Read in Flow Information from a file. There are many *.flw or *.dfw or *.dyn files on the Internet for use with Engine Simulation Programs. This will import the flow and lift information.

-Valve and Throat Sizing	
Fare and Throat orzing	Cost
Intake Valve Size 2,02	Seat Angle 45
Intake Valve Stem Diameter	•
Intake Throat 0.91 CSA	Seat .08 Width
Number of Intake <u>1</u> Valves	
Exhaust Valve 1.60 Size	
Exhaust Valve Stem Diameter 0.3415	•
Exhaust Throat 0.91	
Number of 1 Exhaust Valves	
● CSA % of Valve Size ○ Inches	O Diameter
Done	
Only used by the Analyze Flow	Data Form -
Intake Port MCSA 0.0	
Exhaust Port MCSA 0.0	

	Calculate	e Velocity	y and Disc	charge Coe	efficient a	t Curtain	n Area.	
C Original		Intak	(e			Exhaust		
-	Valve Lift	Flow CFM	Velocity @	Discharge	Valve Lift	Flow CFM	Velocity @	Discharge
💿 Curtain		@ Test	Curtain fps	Coefficient		@ Test	Curtain free	Coefficient
C Throat	0.2	131.0	243.495	0.69511	0.2	116.0	276.930	0.790556
O Valve	0.3	188.0	232.963	0.665042	0.3	153.0	243.507	0.695144
O CFM Sq. In	0.4	230.0	213.756	0.610211	0.4	194.0	231.570	0.661068
	0.5	260.0	193.309	0.551843	0.5	212.0	202.445	0.577923
	0.6	273.0	169.146	0.482863	0.6	245.0	194.965	0.556569
	0.7	282.0	149.762	0.427527	0.7	253.0	172.569	0.492637

Calculate Velocity and Discharge Coefficient at Throat Area.

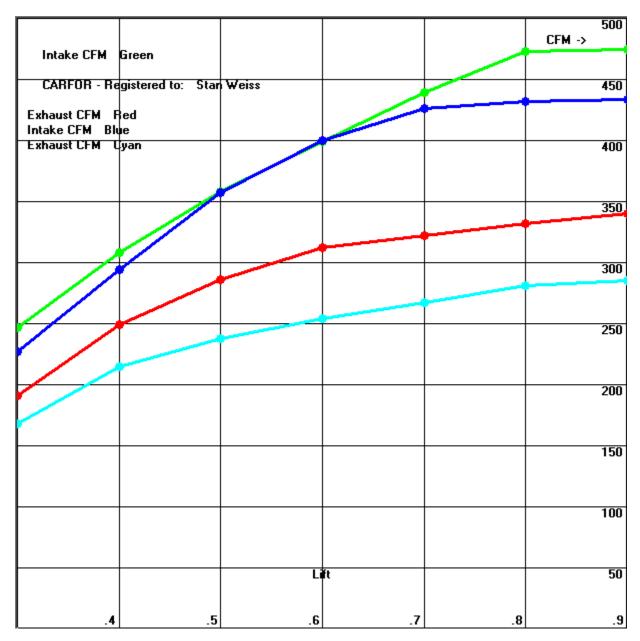
O Original

O Curtain

Throat

O Valve

O CFM Sq. In


	Inta	ke	2		Exhaust		
Valve Lift	Flow CFM @ Test	Velocity @ Throat fps	Discharge Coefficient	Valve Lift	Flow CFM @ Test	Velocity @ Throat fos	Discharge Coefficient
0.2	131.0	118.418	0.338049	0.2	116.0	176.942	0.505119
0.3	188.0	169.943	0.485139	0.3	153.0	233.380	0.666234
0.4	230.0	207.909	0.593521	0.4	194.0	295.920	0.844767
0.5	260.0	235.027	0.670936	0.5	212.0	323.376	0.923148
0.6	273.0	246.779	0.704483	0.6	245.0	373.713	1.066845
0.7	282.0	254.914	0.727708	0.7	253.0	385.916	1.101681

Calculate Velocity and Discharge Coefficient at Valve Area.

O Original		Intal	ke			Exhaust	aust						
	Valve Lift	Flow CFM	Velocity @	Discharge	Valve Lift	Flow CFM	Velocity @	Discharge					
O Curtain		@ Test	Valve fps	Coefficient		@ Test	Valve fris	Coefficient					
C Throat	0.2	131.0	94.791	0.270603	0.2	116.0	138.465	0.395278					
• Valve	0.3	188.0	136.037	0.388346	0.3	153.0	182.630	0.521358					
O CFM Sq. In	0.4	230.0	166.428	0.475104	0.4	194.0	231.570	0.661068					
	0.5	260.0	188.136	0.537074	0.5	212.0	253.056	0.722404					
	0.6	273.0	197.542	0.563928	0.6	245.0	292.447	0.834854					
	0.7	282.0	204.055	0.582519	0.7	253.0	301.997	0.862114					

	CFM Flow per Sq. Inch at Throat Area and at Valve Area.									
O Original O Curtain	Valve Lift	Flow CFM @ Test	CFM per Sq In @ Throat	CFM per Sq In @ Valve	Valve Lift	Flow CFM @ Test	CFM per Sq In @ Throat	CFM perSq In @Valve		
C Throat	0.2	131.0	49.341	39.496	0.2	116.0	73.726	57.694		
O Valve	0.3	188.0	70.810	56.682	0.3	153.0	97.242	76.096		
💿 CFM Sq. In	0.4	230.0	86.629	69.345	0.4	194.0	123.300	96.488		
	0.5	260.0	97.928	78.390	0.5	212.0	134.740	105.440		
	0.6	273.0	102.824	82.309	0.6	245.0	155.714	121.853		
	0.7	282.0	106.214	85.023	0.7	253.0	160.798	125.832		

Graph CFM

Graph FPS

				400
				fps ->
Intake Curtain fps Gr	een			•
CARFOR - Registered	to: Star Weiss			360
Intake Throat fps Red				
Intake Valve fps Blue				I
Intake MCSA tps Cyan				320
Intake Curtain fps Mage	enta			520
Intake Throat fps Dark	Green			
Intake Valve fps Dark R				
Intake MCSA fps Dark B	3lue 🧹			280
			_	
				T
				240
				200
				200
				160
				100
				120
├ ───				80
		Lift		40
.4	.5	.6	.7 .8	.9

Graph DC

Text Report Output

RPM = 11200

Rod Length = 6.0

Bore = 4.225

Ava

235.333

Stroke = 3.55

Wrist Pin Offset = 0.0Number of - Intake Valves = 1 - Exhaust Valves = 1 Incare valve bize = 2.2/Exhaust Valve Size = 1.6Intake Valve / Bore Ratio = 0.537278Exhaust Valve / Bore Ratio = 0.378698Intake Valve Area = 4.047078 sq. in.Exhaust Valve Area = 2.010619 sq. in. Intake Valve Size = 2.27 Exhaust Valve Size = 1.6 Intake Valve Stem Size = 0.31Exhaust Valve Stem Size = 0.3415Intake Valve Stem Area = 0.075477 sq. in.Exhaust Valve Stem Area = 0.091595 sq. in. Valve Lift at which the Valve Area and Window / Curtain Area are the SAME SIZE At that point the velocity will be the same in both areas Intake Valve Lift = 0.5675 Inches Exhaust Valve Lift = 0.4 Inches User Selected DC - Discharge Coefficient = 0.5 Intake Centerline = 111.0 Throat CSA (0.91) Intake = 3.2759 sq. in. Throat CSA (0.91) Exhaust = 1.5734 sq. in. Effective Throat CSA = 0.89969 Effective Throat CSA = 0.88462 Valve Lift at which the Throat Area and Window / Curtain Area are the SAME SIZE At that point the velocity will be the same in both areas Intake Valve Lift = 0.45936 Inches Exhaust Valve Lift = 0.31302 Inches Intake Valve Seat Angle = 55.0 Intake Valve Seat Width = 0.04 User - Intake MCSA = 3.142731 User - Exhaust MCSA = 1.583673 ----- Curtain ----- Effective --- Throat -- ---- Valve ------- MCSA ----Intake Lift CFM fps DC Area Area fps DC fps DC fps DC .2000 146.000 245.674 0.7013 1.426 1.000 106.963 0.3053 86.581 0.2472 111.495 0.3183 .3000 231.000 259.135 0.7398 2.139 1.583 169.235 0.4831 136.988 0.3911 176.407 0.5036 .4000 314.000 264.183 0.7542 2.853 2.151 230.043 0.6567 186.208 0.5316 239.791 0.6845 .5000 384.000 258.462 0.7378 3.566 2.631 281.327 0.8031 227.720 0.6501 293.248 0.8371 .6000 426.000 238.943 0.6821 4.279 2.919 312.097 0.8909 252.627 0.7212 325.322 0.9287 .7000 450.000 216.347 0.6176 4.992 3.083 329.680 0.9411 266.859 0.7618 343.650 0.9810 .8000 465.000 195.613 0.5584 5.705 3.186 340.669 0.9725 275.754 0.7872 355.105 1.0137 .9000473.000176.8700.50496.4183.241346.5300.9892280.4990.8007361.214.0000482.000162.2120.46317.1313.302353.1231.0081285.8360.8160368.087avg374.556224.1600.63994.2792.566274.4070.7834222.1190.6341286.036 1.0312 1.0000 482.000 162.212 1.0508 0.8166 Avq % Step ----- CFM per Sq. In. ----- L/D Lift Intake Sq In Lift CFM Increase Throat Valve Curtain MCSA Ratio mm M^3/s Area fps .2000 146.000 .2000146.00044.56836.075102.36446.456.0885.080.06891.192294.054.3000231.00058.2270.51557.078107.97373.503.1327.620.10901.893292.801.4000314.00035.9395.85177.587110.07699.913.17610.160.14822.597290.127 .5000 384.000 22.29 117.219 94.883 107.693 122.187 .220 12.70 0.1812 3.276 281.327
 .6000
 426.000
 10.94
 130.040
 105.261
 99.559
 135.551
 .264
 15.24
 0.2010
 3.276
 312.097

 .7000
 450.000
 5.63
 137.366
 111.191
 90.144
 143.188
 .308
 17.78
 0.2124
 3.276
 329.680

 .8000
 465.000
 3.33
 141.945
 114.898
 81.506
 147.960
 .352
 20.32
 0.2195
 3.276
 340.669
 .9000 473.000 1.72 144.387 116.874 73.696 150.506 .396 22.86 0.2232 3.276 346.530 1.0000482.0001.90147.135119.098Avg374.556114.33692.550 147.135119.09867.588153.370114.33692.55093.400119.182 .441 25.40 0.2275 3.276 353.123 aust ----- Curtain ---- Effective --- Throat --CFM fps DC Area Area fps DC
 CFM
 fps
 DC
 Area
 fps
 DC
 fps
 DC
 fps
 DC
 fps
 gathered
 fps
 DC
 fps
 fps
 fps
 DC
 fps
 fps
 DC
 fps
 fps ---- MCSA ----fps DC Exhaust Lift 0.3980 .2000 .3000151.000240.3240.68611.5081.035230.3290.6575180.2430.5145228.8350.6533.4000188.000224.4080.64062.0111.288286.7680.8186224.4080.6406284.9070.8133.5000238.000227.2730.64882.5131.631363.0361.0364284.0920.8110360.6811.0296 .6000 271.000 215.655 0.6156 3.016 1.857 413.373 1.1801 323.482 0.9235 410.691 1.1724
 .7000
 286.000
 195.078
 0.5569
 3.519
 1.959
 436.253
 1.2454
 341.387
 0.9746
 433.423
 1.2373

 .8000
 296.000
 176.662
 0.5043
 4.021
 2.028
 451.507
 1.2889
 353.324
 1.0086
 448.577
 1.2806

 .9000
 297.000
 157.563
 0.4498
 4.524
 2.035
 453.032
 1.2933
 354.518
 1.0120
 450.093
 1.2849
 1.0000 299.000 142.762 0.4075 5.027 2.049 456.083 1.3020 356.905 1.0189 453.124 1.2935 Avg 235.333 199.929 0.5707 3.016 1.612 358.968 1.0248 280.908 0.8019 356.639 1.0181 % Step ----- CFM per Sq. In. ----- L/D Lift Exhaust CFM Increase Throat Valve Curtain MCSA Ratio mm Lift M^3/s 58.472 45.757 91.514 58.093 .125 5.08 0.0434 92.000 .2000 .3000151.00064.1395.97175.101100.13595.348.1887.620.0713.4000188.00024.50119.48793.50493.504118.711.25010.160.0887.5000238.00026.60151.265118.37194.697150.284.31312.700.1123 .6000 271.000 13.87 172.239 134.784 89.856 171.121 .375 15.24 0.1279

 .7000
 286.000
 5.54
 181.772
 142.245
 81.283
 180.593
 .438
 17.78
 0.1350

 .8000
 296.000
 3.50
 188.128
 147.218
 73.609
 186.907
 .500
 20.32
 0.1397

 .9000
 297.000
 .34
 188.763
 147.716
 65.651
 187.539
 .563
 22.86
 0.1402

 1.0000
 299.000
 .67
 190.034
 148.710
 59.484
 188.802
 .625
 25.40
 0.1411

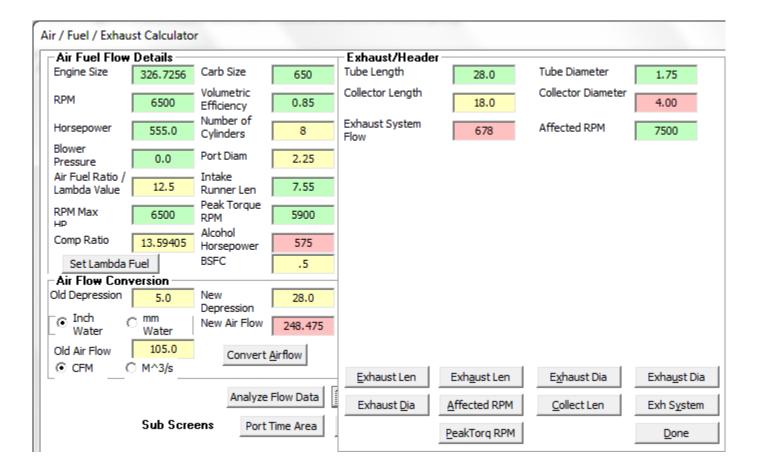
149.570 117.045 83.304 148.600

To get the same Throat numbers as posted on my web site for the Throat calculations use a valve stem size = 0

```
Stroke = 3.55
Bore = 4.225
                                          Rod Length = 6.0
                                                              RPM = 11200
Wrist Pin Offset = 0.0
                                          Number of - Intake Valves = 1 - Exhaust Valves = 1
Intake Valve Size = 2.27
                                          Exhaust Valve Size = 1.6
Intake Valve / Bore Ratio = 0.537278
                                          Exhaust Valve / Bore Ratio = 0.378698
Intake Valve Area = 4.047078 sq. in.
                                        Exhaust Valve Area = 2.010619 sq. in.
Intake Valve Stem Size = 0.0
                                         Exhaust Valve Stem Size = 0.3415
Intake Valve Stem Area = 0.0 sq. in.
                                          Exhaust Valve Stem Area = 0.091595 sq. in.
Valve Lift at which the Valve Area and Window / Curtain Area are the SAME SIZE
At that point the velocity will be the same in both areas
                                          Exhaust Valve Lift = 0.4 Inches
Intake Valve Lift = 0.5675 Inches
Intake Centerline = 111.0
                                          User Selected DC - Discharge Coefficient = 0.5
Throat CSA (0.91) Intake = 3.3514 sq. in. Throat CSA (0.91) Exhaust = 1.5734 sq. in.
Effective Throat CSA = 0.91
                                          Effective Throat CSA = 0.88462
Valve Lift at which the Throat Area and Window / Curtain Area are the SAME SIZE
At that point the velocity will be the same in both areas
Intake Valve Lift = 0.46995 Inches Exhaust Valve Lift = 0.31302 Inches
                                          Intake Valve Seat Width = 0.04
Intake Valve Seat Angle = 55.0
User - Intake MCSA = 3.142731
                                          User - Exhaust MCSA = 1.583673
```

In	take		Curtain		Effectiv	e Th	roat	Va	lve	MC:	5A
Lift	CFM	fps	DC	Area	Area	fps	DC	fps	DC	fps	DC
.2000	146.000	245.674	0.7013	1.426	1.000	104.554	0.2985	86.581	0.2472	111.495	0.3183
.3000	231.000	259.135	0.7398	2.139	1.583	165.424	0.4722	136.988	0.3911	176.407	0.5036
.4000	314.000	264.183	0.7542	2.853	2.151	224.862	0.6419	186.208	0.5316	239.791	0.6845
.5000	384.000	258.462	0.7378	3.566	2.631	274.991	0.7850	227.720	0.6501	293.248	0.8371
.6000	426.000	238.943	0.6821	4.279	2.919	305.068	0.8709	252.627	0.7212	325.322	0.9287
.7000	450.000	216.347	0.6176	4.992	3.083	322.255	0.9199	266.859	0.7618	343.650	0.9810
.8000	465.000	195.613	0.5584	5.705	3.186	332.997	0.9506	275.754	0.7872	355.105	1.0137
.9000	473.000	176.870	0.5049	6.418	3.241	338.726	0.9670	280.499	0.8007	361.214	1.0312
1.0000	482.000	162.212	0.4631	7.131	3.302	345.171	0.9854	285.836	0.8160	368.087	1.0508
Avg	374.556	224.160	0.6399	4.279	2.566	268.227	0.7657	222.119	0.6341	286.036	0.8166

In	take	% Step		- CFM per	Sq. In.		L/D	Lift		Sq In	
Lift	CFM	Increase	Throat	Valve	Curtain	MCSA	Ratio	mm	M^3/s	Area	fps
.2000	146.000		43.564	36.075	102.364	46.456	.088	5.08	0.0689	1.192	294.054
.3000	231.000	58.22	68.927	57.078	107.973	73.503	.132	7.62	0.1090	1.893	292.801
.4000	314.000	35.93	93.693	77.587	110.076	99.913	.176	10.16	0.1482	2.597	290.127
.5000	384.000	22.29	114.579	94.883	107.693	122.187	.220	12.70	0.1812	3.302	279.075
.6000	426.000	10.94	127.112	105.261	99.559	135.551	.264	15.24	0.2010	3.351	305.068
.7000	450.000	5.63	134.273	111.191	90.144	143.188	.308	17.78	0.2124	3.351	322.255
.8000	465.000	3.33	138.749	114.898	81.506	147.960	.352	20.32	0.2195	3.351	332.997
.9000	473.000	1.72	141.136	116.874	73.696	150.506	.396	22.86	0.2232	3.351	338.726
1.0000	482.000	1.90	143.821	119.098	67.588	153.370	.441	25.40	0.2275	3.351	345.171
Avg	374.556		111.761	92.550	93.400	119.182					


Ex	haust		Curtain		Effectiv	e Thi	roat	Va	lve	MC:	5A
Lift	CFM	fps	DC	Area	Area	fps	DC	fps	DC	fps	DC
.2000	92.000	219.634	0.6270	1.005	.630	132.613	0.3786	109.817	0.3135	139.423	0.3980
.3000	151.000	240.324	0.6861	1.508	1.035	217.658	0.6214	180.243	0.5145	228.835	0.6533
.4000	188.000	224.408	0.6406	2.011	1.288	270.992	0.7736	224.408	0.6406	284.907	0.8133
.5000	238.000	227.273	0.6488	2.513	1.631	343.064	0.9794	284.092	0.8110	360.681	1.0296
.6000	271.000	215.655	0.6156	3.016	1.857	390.632	1.1151	323.482	0.9235	410.691	1.1724
.7000	286.000	195.078	0.5569	3.519	1.959	412.254	1.1769	341.387	0.9746	433.423	1.2373
.8000	296.000	176.662	0.5043	4.021	2.028	426.668	1.2180	353.324	1.0086	448.577	1.2806
.9000	297.000	157.563	0.4498	4.524	2.035	428.110	1.2221	354.518	1.0120	450.093	1.2849
1.0000	299.000	142.762	0.4075	5.027	2.049	430.993	1.2304	356.905	1.0189	453.124	1.2935
Avg	235.333	199.929	0.5707	3.016	1.612	339.220	0.9684	280.908	0.8019	356.639	1.0181

Ex	haust	% Step		CFM per	Sq. In.		L/D	Lift	
Lift	CFM	Increase	Throat	Valve	Curtain	MCSA	Ratio	mm	M^3/s
.2000	92.000		55.255	45.757	91.514	58.093	.125	5.08	0.0434
.3000	151.000	64.13	90.691	75.101	100.135	95.348	.188	7.62	0.0713
.4000	188.000	24.50	112.913	93.504	93.504	118.711	.250	10.16	0.0887
.5000	238.000	26.60	142.943	118.371	94.697	150.284	.313	12.70	0.1123
.6000	271.000	13.87	162.763	134.784	89.856	171.121	.375	15.24	0.1279
.7000	286.000	5.54	171.772	142.245	81.283	180.593	.438	17.78	0.1350
.8000	296.000	3.50	177.778	147.218	73.609	186.907	.500	20.32	0.1397
.9000	297.000	.34	178.379	147.716	65.651	187.539	.563	22.86	0.1402
1.0000	299.000	.67	179.580	148.710	59.484	188.802	.625	25.40	0.1411
Avg	235.333		141.342	117.045	83.304	148.600			

Text Report 2 Output

Bore = 4.0 Stroke = 3.25 Rod Length = 5.7 Wrist Pin Offset = 0.0 Number of - Intake Valves = 1 Intake Valve Size = 2.02 Intake Valve / Bore Ratio = 0.505 Intake Valve Area = 3.204739 sq. in. Intake Valve Stem Size = 0.3415 Intake Valve Stem Area = 0.091595 sq. in. Throat CSA (0.91) Intake = 2.5622 sq. in. Effective Throat CSA = 0.89416 User - Intake MCSA = 2.488618 User - Exhaust MCSA = 0.0

II	ntake	Tł	nroat	Va	alve		CSA	CFM	per Sq.	In
RPM	CFM	fps	DC	fps	DC	fps	DC	Throat	Valve	MCSA
1000	38.6	36.114	0.1031	28.874	0.0824	37.183	0.1061	15.048	12.031	15.493
1500	57.8	54.171	0.1546	43.311	0.1236	55.774	0.1592	22.571	18.046	23.239
2000	77.1	72.229	0.2062	57.748	0.1649	74.366	0.2123	30.095	24.062	30.986
2500	96.4	90.286	0.2577	72.185	0.2061	92.957	0.2654	37.619	30.077	38.732
3000	115.7	108.343	0.3093	86.622	0.2473	111.548	0.3184	45.143	36.093	46.478
3500	134.9	126.400	0.3608	101.059	0.2885	130.140	0.3715	52.667	42.108	54.225
4000	154.2	144.457	0.4124	115.496	0.3297	148.731	0.4246	60.190	48.123	61.971
4500	173.5	162.514	0.4639	129.933	0.3709	167.323	0.4777	67.714	54.139	69.718
5000	192.8	180.571	0.5155	144.370	0.4121	185.914	0.5307	75.238	60.154	77.464
5500	212.1	198.628	0.5670	158.807	0.4533	204.505	0.5838	82.762	66.170	85.211
6000	231.3	216.686	0.6186	173.244	0.4946	223.097	0.6369	90.286	72.185	92.957
6500	250.6	234.743	0.6701	187.681	0.5358	241.688	0.6900	97.809	78.201	100.703
7000	269.9	252.800	0.7217	202.118	0.5770	260.280	0.7430	105.333	84.216	108.450
7500	289.2	270.857	0.7732	216.555	0.6182	278.871	0.7961	112.857	90.231	116.196
8000	308.4	288.914	0.8248	230.992	0.6594	297.462	0.8492	120.381	96.247	123.943
8500	327.7	306.971	0.8763	245.429	0.7006	316.054	0.9022	127.905	102.262	131.689
9000	347.0	325.028	0.9279	259.866	0.7418	334.645	0.9553	135.429	108.278	139.435
9500	366.3	343.086	0.9794	274.303	0.7831	353.236	1.0084	142.952	114.293	147.182
10000	385.6	361.143	1.0310	288.740	0.8243	371.828	1.0615	150.476	120.309	154.928
10500	404.8	379.200	1.0825	303.177	0.8655	390.419	1.1145	158.000	126.324	162.675
11000	424.1	397.257	1.1341	317.614	0.9067	409.011	1.1676	165.524	132.339	170.421
11500	443.4	415.314	1.1856	332.051	0.9479	427.602	1.2207	173.048	138.355	178.168
12000	462.7	433.371	1.2372	346.488	0.9891	446.193	1.2738	180.571	144.370	185.914
12500	481.9	451.428	1.2887	360.926	1.0303	464.785	1.3268	188.095	150.386	193.660
13000	501.2	469.485	1.3402	375.363	1.0716	483.376	1.3799	195.619	156.401	201.407
13500	520.5	487.543	1.3918	389.800	1.1128	501.968	1.4330	203.143	162.416	209.153
14000	539.8	505.600	1.4433	404.237	1.1540	520.559	1.4860	210.667	168.432	216.900
14500	559.1	523.657	1.4949	418.674	1.1952	539.150	1.5391	218.190	174.447	224.646
15000	578.3	541.714	1.5464	433.111	1.2364	557.742	1.5922	225.714	180.463	232.392
15500	597.6	559.771	1.5980	447.548	1.2776	576.333	1.6453	233.238	186.478	240.139
16000	616.9	577.828	1.6495	461.985	1.3188	594.925	1.6983	240.762	192.494	247.885
16500	636.2	595.885	1.7011	476.422	1.3600	613.516	1.7514	248.286	198.509	255.632
17000	655.4	613.943	1.7526	490.859	1.4013	632.107	1.8045	255.809	204.524	263.378
17500	674.7	632.000	1.8042	505.296	1.4425	650.699	1.8576	263.333	210.540	271.124
18000	694.0	650.057	1.8557	519.733	1.4837	669.290	1.9106	270.857	216.555	278.871
Avg	366.3	343.086	0.9794	274.303	0.7831	353.236	1.0084	142.952	114.293	147.182

Injector Size 1 - Calculate EFI Injector Size and Fuel Pump Flow needed from Horsepower, BSFC, Number of Injectors and Duty Cycle.

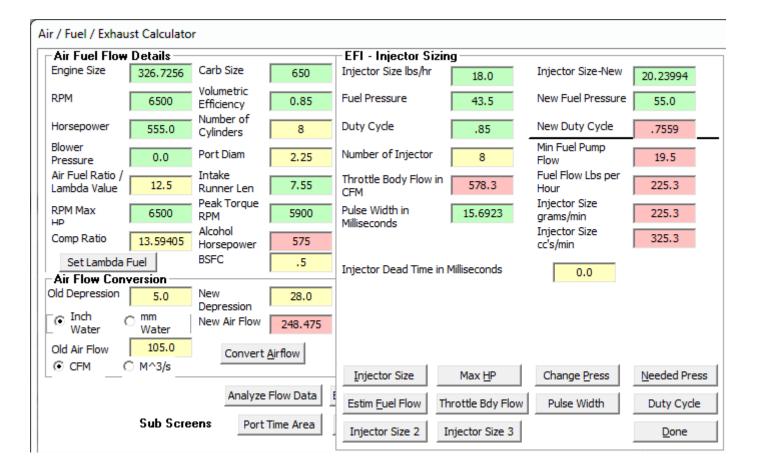
Calculate Max Horsepower from EFI Injector Size, Fuel Pressure (Rated), New Fuel Pressure (Running) BSFC, Duty Cycle, and Number of Injectors.

NOTE: If you have not changed fuel pressure set New Fuel Pressure the same as Fuel Pressure.

Calculate change in Injector Flow Rating from Fuel Pressure Change, using Fuel Pressure, New Fuel Pressure, and Injector Size.

Calculate needed Fuel Pressure Change for Desired Injector Flow Rate from Injector Size, New Injector Size and Fuel Pressure.

Estimate Fuel Flow needed for a given Engine Size, RPM, Air Fuel Ratio and Volumetric Efficiency.


Estimate Throttle Body Flow in CFM, at 28 inches of water. Using Engine Size, Rpm, and Volumetric Efficiency – If you do not know the Volumetric Efficiency then use a VE of 1.

Calculate Pulse Width in Milliseconds From Duty Cycle and RPM.

Calculate Duty Cycle From Pulse Width in Milliseconds and RPM.

Injector Size 2 - Estimate Fuel Injector Size needed for a given Engine Size, RPM, Air Fuel Ratio, Duty Cycle, Number of Injectors, Volumetric Efficiency and Blower Pressure. For N/A engine make sure Blower Pressure is set to zero (0.0).

Injector Size 3 - Estimate Fuel Injector Size needed for a given Engine Size, RPM, Air Fuel Ratio, Pulse Width, Number of Injectors, Volumetric Efficiency, Injector Dead Time and Blower Pressure. For N/A engine make sure Blower Pressure is set to zero (0.0).

Calculate Mach Number and Velocity From Bore, Stroke, Valve Diameter, Valve Lift and RPM. Calculate RPM From Bore, Stroke, Valve Diameter, Valve Lift and Mach Number. Calculate Valve Lift From Bore, Stroke, Valve Diameter, Mach Number and RPM. Calculate Valve Diameter From Bore, Stroke, Mach Number, Valve Lift and RPM.

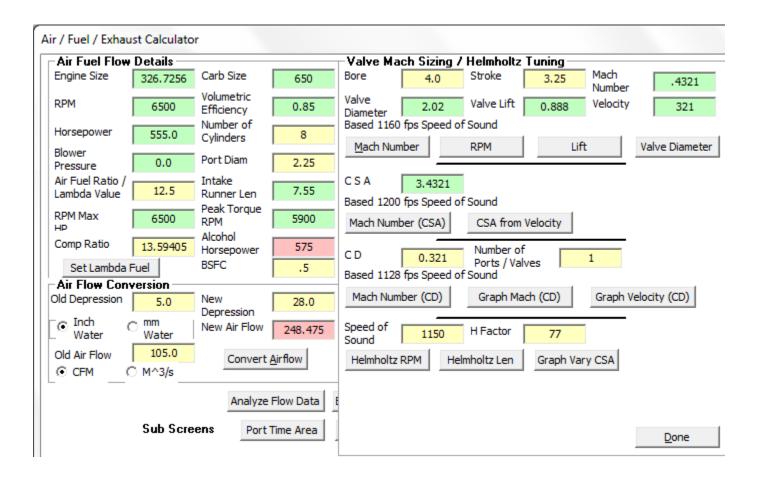
Calculate Mach Number (CSA) and Velocity From Bore, Stroke, CSA, and RPM.

Calculate CSA From Velocity, Bore, Stroke, and RPM.

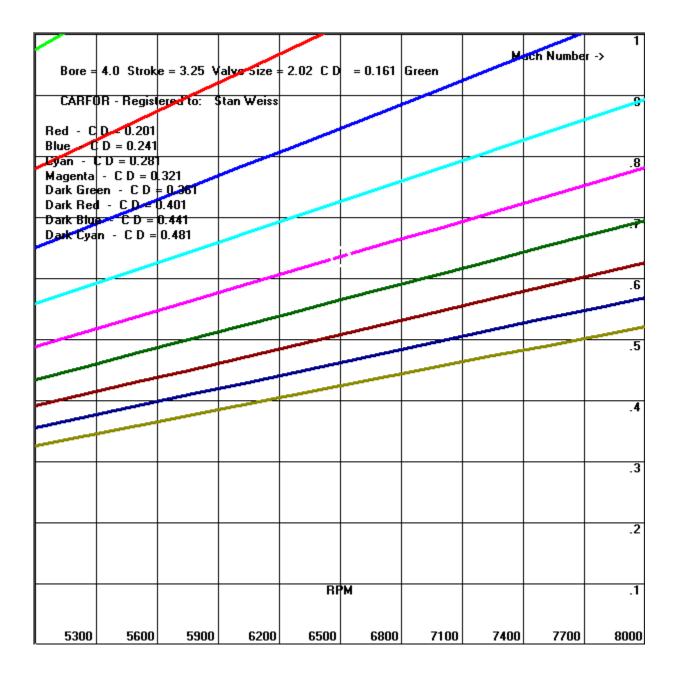
Calculate Mach Number (CD) and Velocity From Bore, Stroke, Valve Size, Coefficient of Discharge, and RPM.

Graph Mach Number (CD) From Bore, Stroke, Valve Size, Coefficient of Discharge, and RPM.

Graph Velocity (CD) From Bore, Stroke, Valve Size, Coefficient of Discharge, and RPM.


Helmholtz Tuning

Calculates RPM (Peak Torque) From Bore, Stroke, Length - Port + Runner, CSA, Compression Ratio, and Speed of Sound.


Calculate Length - Port + Runner From Bore, Stroke, RPM (Peak Torque), CSA, Compression Ratio, and Speed of Sound.

Graph Length - Port + Runner Varying CSA From Bore, Stroke, RPM (Peak Torque), CSA, Compression Ratio, and Speed of Sound.

H Factor - I use 77 in my calculations. There are a number of online calculators and spreadsheets that use 80. I have added this option so the user can use 80 or any other number they want.

Mach Number	0.6355	Velocity	716.8	3139
C D Based 1128	0.321 B fps Speed of So	Number of F /Valves und	Ports 1	
Mach N	umber (CD)	Graph Mach	(CD)	Graph Velocity (CD)

Calculate Port Time Area in milliseconds in cm² and cm²/cc for each user supplied lift and duration numbers, bore stroke, intake valve size, exhaust valve size and RPM.

Valve - Cam De	tails —	Inta	k -			Exhaust		
Valve Sizing	Valve Lift	Duration	Ke Time Port	Time Port	Valve Lift	Duration	Time Port	Time Port
Port Time Area			Area cm^2	Area cm^2/cc			Area cm^2	Area
Port Time Area 2	.008	288	2.418725	0.003614	.008	300	1.995648	0.002982
Bore	.050	235	12.33507	0.018431	.050	250	10.394	0.015531
4.0	.100	210	22.04567	0.03294	. 100	235	19.54071	0.029198
Stroke 3.25	.150	190	29.91912	0.044705	. 150	205	25.56923	0.038205
RPM	.200	175	36.74278	0.054901	.200	190	31.59775	0.047213
6500	.250	155	40.67951	0.060783	.250	175	36.37899	0.054357
Rod Lenght	.300	135	42.51665	0.063528	.300	155	38.66567	0.057774
5.7 Degrees TDC /	.350	115	42.25420	0.063136	.350	135	39.28931	0.058706
Intake Centerline	.400	95	39.89217	0.059606	.400	115	38.24991	0.057153
222	.450	85	40.15461	0.059999	.450	95	35.54747	0.053115
User DC	.500	70	36.74278	0.054901	.500	75	31.18199	0.046592
Graphing	.600	58	36.53283	0.054587	.600	63	31.43145	0.046965
	.700	44	32.33365	0.048313	.700	47	27.35700	0.040877
Calculate	.800	30	25.19505	0.037646	.800	33	21.95212	0.032801
Done	.900	22	20.78592	0.031058	.900	22	16.46409	0.0246

-Valve and Throat Sizing
Intake Valve Size 2.02 Seat Angle 45
Intake Valve Stem Diameter
Intake Throat 0.91 Seat .08 CSA Width
Number of Intake 1 Valves
Exhaust Valve 1.60 Size
Exhaust Valve Stem Diameter
Exhaust Throat 0.91
Number of 1 Exhaust Valves
€ CSA % of CSA in Sq. C Diameter Valve Size C Inches
Done
Only used by the Analyze Flow Data Form - Intake Port MCSA 0,0
Exhaust Port MCSA 0.0
Graphing Options
⊙ Flow ○ Lift
Cur DC C Lift Vert
C Cur Area C Lift Horiz
⊂ Time ⊂ Piston Area ⊂ Travel
C Time, Graph Zoom
Cur Vel
C Throat See See See See See See See See See Se
O Min CSA Vel
C Piston Flow - Plus ONLY
O Piston Velocity - Plus
O Piston Acceler - Plus ONLY
Piston Vel / Acc Scale
Graph
Graph Plus
Done
Added Read *.FLW File 4.9.1

-Port Time Area	
Intake Rocker Arm Ratio	1.5
Intake Lash	0.024
Degrees BTDC Intake Open	120.0
Exhaust Rocker Arm Ratio	1.5
Exhaust Lash	0.03
Degrees BBDC Exhaust Open	340.0
Set Lift Table	<u>D</u> one
	<u>D</u> one Time Area2 / Graphing
Only used by the Port	Time Area2 / Graphing
Only used by the Port Intake Valve Angle	Time Area2 / Graphing
Only used by the Port Intake Valve Angle Exhaust Valve Angle LSA Increase	Time Area2 / Graphing 23.0 23.0
Only used by the Port Intake Valve Angle Exhaust Valve Angle LSA Increase Decrease (-) Advance Retard (-) /	 Time Area2 / Graphing 23.0 23.0 0.0
Only used by the Port Intake Valve Angle Exhaust Valve Angle LSA Increase Decrease (-) Advance Retard (-) / Intake Advance Retard (-) /	Time Area2 / Graphing 23.0 23.0 0.0 0.0

Advance / Retard Camshaft - Is the number of degrees the Intake centerline has been moved. The intake centerline in the above and first example below is 111 degrees. If we change Degrees TDC / Intake Centerline to 232, we have moved the intake centerline to 116 degrees and Retarded the camshaft 5 degrees. See second example below. Bore = 4.0000Stroke = 3.2500 Rod Length = 5.7000RPM = 6500Number of - Intake Valves = 1 - Exhaust Valves = 1 Wrist Pin Offset = 0.0 Intake Valve Size = 2.02 Exhaust Valve Size = 1.6 Intake Valve / Bore Ratio = 0.505 Exhaust Valve / Bore Ratio = 0.4 Intake Valve Area = 3.204739 sq. in. Exhaust Valve Area = 2.010619 sq. in. Intake Valve Stem Size = 0.375 Exhaust Valve Stem Size = 0.375 Intake Valve Stem Area = 0.110447 sq. in. Exhaust Valve Stem Area = 0.110447 sq. in. Valve Lift at which the Valve Area and Window / Curtain Area are the SAME SIZE At that point the velocity will be the same in both areas Intake Valve Lift = 0.505 Inches Exhaust Valve Lift = 0.4 Inches Intake Centerline = 111.00000 User Selected DC - Discharge Coefficient = 0.5 Throat CSA (0.91) Intake = 2.5434 sq. in. Throat CSA (0.91) Exhaust = 1.5545 sq. in. Effective Throat CSA = 0.89086 Effective Throat CSA = 0.8793 Valve Lift at which the Throat Area and Window / Curtain Area are the SAME SIZE At that point the velocity will be the same in both areas Intake Valve Lift = 0.40079 Inches Exhaust Valve Lift = 0.30927 Inches

Valve puration Time Port Filton Cylinder Valve Degreese Platon Outcain Degreese The part of the	Valve Duration Time Port	Time Port Piston	Cylinder	Valve 1	Degrees	Biston	Curtain	Depress-	Depres	s- Throat
cmccmccmcIntrolegic28CPH Velocity Dof 1Utercy Dof 1Utercy Dof 1Utercy Dof 1Utercy Velocity0.0760022.0013.64350.036470.00000.002001.502.7113.123.031.575.110.080021.0018.64370.000120.016370.00201.508.1227.443.031.2777.640.080021.0018.52200.02870.002870.14730.02001.508.1227.443.031.2277.640.080021.0013.591480.028200.02880.020003.0016.2355.917.004.4815.310.090021.000.030350.03980.081440.020003.0016.2357.521.41.637.2102.0400.090021.000.013410.003580.00591.047270.02005.0027.0116.332.0811.37822.940.090021.000.136400.013410.017641.35750.00205.002.01115.932.1811.9832.1940.090021.000.012410.012400.012400.012410.012400.012411.9832.1941.9831.9831.9830.105020.0021.927610.032460.012565.002.00256.5014.552.09241.551.5141.4111.5433.6140.115020.0021.927610.032660.025567.50			-		-			-	-	
0.07800 221.00 18.09633 0.02704 0.00003 0.06349 0.00200 1.00 5.11 5.51 0.08000 221.00 18.45220 0.02217 0.00021 0.14735 0.00200 1.00 5.41 25.58 1.10 5.41 7.66 0.04600 214.00 18.25220 0.0217 0.2455 0.00200 2.00 10.62 48.72 .524 2.167 10.211 0.04600 217.00 18.9123 0.00350 0.00350 1.00 3.01 3.52 59.73 1.143 5.772 1.776 0.09500 212.00 21.36541 0.03520 0.00591 1.04727 0.00200 5.00 27.01 10.63 2.583 10.322 2.944 0.09600 212.00 21.36541 0.03244 0.01431 2.37442 0.00200 5.00 27.01 10.63 3.081 1.5273 3.081 0.12050 204.002 2.44567 0.03244 1.04247 0.03254 5.014		cm^2/cc	cc	-		28" CFM	Velocity	DC of 1	User D	2 Velocity
0.0800 220.00 1.8.7637 0.0272 0.1273 0.0200 1.00 5.41 25.88 1.49 .597 5.11 0.0800 218.00 18.2388.1 0.0227 0.0217 0.0219 0.0020 2.00 1.50 8.21 37.44 .320 1.27 .542 2.167 10.21 0.06000 216.00 18.95444 0.02280 0.00280 0.0019 0.04995 0.00200 3.00 16.23 69.747 1.103 4.438 15.11 0.04000 214.00 10.35444 0.02039 0.04074 0.05375 0.00200 5.00 27.01 16.39 2.581 10.392 2.581 10.392 2.581 10.392 2.581 10.392 2.581 10.392 2.581 10.392 2.581 10.392 2.581 10.392 2.581 10.392 2.581 10.392 2.581 10.392 2.581 10.392 2.581 10.392 2.581 10.392 2.581 10.351 1.591 1.591 </td <td>0.07600 222.00 17.71212</td> <td>0.02647 0.00000</td> <td>0.00000</td> <td>0.00200</td> <td>.00</td> <td>.00</td> <td>.00</td> <td>.000</td> <td>.000</td> <td>.00</td>	0.07600 222.00 17.71212	0.02647 0.00000	0.00000	0.00200	.00	.00	.00	.000	.000	.00
0.0800 219.00 18.05220 0.0217 0.24735 0.0200 1.00 2.01 2.2 2.167 0.279 0.0800 217.00 15.9123 0.02227 0.00127 0.24925 0.00200 2.00 10.22 4.72 .527 1.021 0.0800 215.00 2.93151 0.03235 0.00246 0.58926 0.00200 3.00 16.2 7.95 1.443 5.772 1.7.86 0.09200 211.00 21.02197 0.00259 1.0727 0.00200 4.00 21.6 8.13 3.722 1.443 5.772 1.7.86 0.09200 21.00 2.04567 0.03244 0.01341 2.7574 0.00250 7.00 3.7.4 15.29 4.215 4.681 1.8.31 0.10500 20.00 2.24957 0.02345 0.0229 7.50 4.1215 4.611 1.8.44 3.208 0.11500 20.00 2.24957 0.02346 0.02341 4.7180 0.00250 5.50 1.51 <td>0.07800 221.00 18.09635</td> <td></td> <td>0.01637</td> <td>0.00200</td> <td>.50</td> <td>2.71</td> <td>13.12</td> <td>.039</td> <td>.157</td> <td>2.55</td>	0.07800 221.00 18.09635		0.01637	0.00200	.50	2.71	13.12	.039	.157	2.55
0.08400 218.00 13.22383 0.02272 0.00139 0.04292 0.00200 2.00 10.622 45.7 3.622 1.07 0.08600 216.00 13.95448 0.02380 0.00280 3.00 16.23 69.7 3.10 4.438 15.31 0.09000 216.00 13.95448 0.00389 0.00389 0.00200 3.00 16.23 69.7 2.1 1.443 5.7.71 0.09000 211.00 21.40624 0.00389 0.00774 1.6777 0.00200 5.00 3.6.9 16.7.33 1.033 0.332 2.7.64 0.10000 20.00 22.48521 0.03330 0.0143 2.75444 0.00200 5.00 3.6.6 12.9 3.8.8 15.2.73 3.3.08 0.10500 20.00 22.48521 0.03340 0.01785 3.67574 0.00250 7.00 7.4 15.92 4.2.1 1.644 3.6.1 0.11150 20.00 22.48521 0.03340 0.03240 0.03240		0.02761 0.00032	0.06549	0.00200	1.00	5.41		.149	.597	5.11
0.0680021.7.0019.591250.022270.001260.002600.50260.002002.5.013.525.471.073.22812.760.09800215.0023.5000.031350.002800.002560.002003.0016.236.9.731.1074.4385.710.09200215.0023.10021.0000.031410.006401.325220.002004.0021.628.881.8037.2100.4040.09400211.0021.071640.031410.006441.325220.002005.0027.0116.392.1861.97862.9861.97862.9861.97862.9861.97862.9861.97862.9861.97862.9861.97862.9861.97862.9861.97862.9861.97862.9861.97862.9861.97862.9861.97862.9861.9862.9861.97862.9861.97862.9861.97862.9861.97862.9861.9862.9861.97862.9861.9862.9862.9862.9862.98		0.02817 0.00072	0.14735	0.00200	1.50		37.44	.320	1.279	
0.08000 216.00 0.99040 216.00 0.9904 0.00840 0.008194 0.00200 3.50 16.23 79.52 1.443 5.7.21 17.86 0.09200 214.00 20.66834 0.00389 0.00840 1.3522 0.00204 4.50 21.62 88.88 1.803 7.210 20.40 0.09400 21.00 21.00 21.36541 0.00324 1.00471 0.00204 5.50 27.01 16.39 2.583 10.332 25.48 0.10000 21.00 22.4657 0.03244 0.01414 2.3842 0.00250 4.50 4.411 3.411 3.511										
0.0900215.00215.00215.00215.0021.00 <td></td>										
0.09200 214.00 2.0.66834 0.03088 0.00540 1.3222 0.00200 4.50 21.62 37.83 7.210 20.40 0.09800 212.00 21.36541 0.03324 0.00974 1.63575 0.00200 5.50 27.01 16.39 2.583 10.332 25.48 0.10000 210.00 22.4557 0.03244 0.01341 2.75424 0.00206 6.50 32.38 12.352 3.425										
0.99400 213.00 21.31.00 21.0187 0.02141 0.02200 4.50 27.01 106.39 2.584 0.0324 0.0324 0.0220 5.50 27.61 106.39 2.583 0.522 2.583 0.522 2.584 0.0320 5.50 27.61 114.59 2.584 0.0323 2.584 0.0323 3.282 3.2224 3.282 3.282 3.2025 3.2025 3.281 12.25.4 3.422 1.561 3.5.61 0.10500 20.700 23.36654 0.3491 0.01261 3.20257 0.00250 4.30 4.212.5 4.211 8.448 8.13 5.73 4.121.5 4.211.661 3.5.61 0.11200 20.50 2.5.4470 0.0260 1.00250 5.5.63 15.77 3.37.61 4.5.61 0.11200 20.50 2.5.4470 0.0260 0.0250 1.00255 5.5.										
0.09800 212.00 212.00 21.205 0.0132 25.48 10.312 25.48 0.09800 210.00 22.0457 0.03244 0.0020 5.00 27.64 31.22.45 3.422 1.3.587 30.55 0.10250 208.00 22.93750 0.03426 0.01341 2.76447 0.00250 5.00 37.64 31.54 31.542 4.135.92 4.215 16.613 35.61 3.50.61										
0.0900 211.00 21.7074 0.02244 0.00141 1.9784 0.00200 5.50 29.60 214.59 2.946 1.458 2.428 3.128 2.524 3.0235 3.0235 3.0235 3.0235 3.00250 7.50 4.014 1.229.36 3.818 15.573 3.3.08 0.10500 20.248921 0.03240 0.02350 7.50 4.041 142.15 4.611 18.444 38.13 0.11500 20.500 24.21087 0.03618 0.02250 1.50 44.71 142.15 4.611 18.444 38.13 0.11500 20.500 24.21087 0.03618 0.02251 1.00250 5.00 41.577 3.2114 45.66 0.11200 20.20 25.44471 0.0380 0.0256 1.00 5.10 41.64.28 6.1587 7.1585 7.158 7.158 7.158 7.158 7.158 7.158 7.158 7.158 7.158 7.158 7.158 7.158 7.158 7.158 7.158										
0.10000121.00022.045670.032940.013412.354420.002006.0032.083.2243.2243.2243.1283.15773.0.580.10300028.0022.927500.034260.0134513.202300.002507.0037.74135.924.21516.86135.610.10705026.0023.788330.025044.100850.002508.0044.01142.154.61144.184438.130.11205026.0023.788330.022014.178800.002508.0045.73153.745.39421.75743.160.11250024.004.628170.03600.022685.287710.002509.0048.39155.145.77923.11445.660.12020022.0025.447010.028060.038017.188560.0025010.0055.62173.877.58629.0340.12250010.0025.444550.038020.038017.188560.0025011.0058.457.5363.14450.12050010.0025.444550.039210.042510.0025012.0061.97186.737.95631.82660.570.1325019.0026.244850.042800.042839.376190.0025012.0061.97186.737.95631.82660.570.1325019.0027.77550.041500.045340.1627710.0025015.0061.97186.737.95631.82660.5750.1325019.00 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
0.10250 209.00 22.4821 0.03360 0.01341 2.76247 0.00250 6.50 35.06 129.36 3.818 15.73 33.08 0.10500 207.00 23.36054 0.03491 0.01785 3.67574 0.00250 7.50 40.11 14.611 18.444 38.13 0.11500 205.00 24.21087 0.03618 0.02291 4.71820 0.00250 8.50 45.73 15.74 5.394 21.075 43.16 0.11500 203.00 25.04021 0.03741 0.02260 5.8933 0.00250 10.0 53.68 16.73 7.56 66.15 0.12500 201.00 25.44455 0.03820 0.04251 10.050 56.23 10.300 56.81 7.6892 20.305 11.06 51.73 7.6892 20.310 56.43 31.464 56.63 0.12500 20.0025 26.439 0.04553 3.7619 0.0455 31.66 67.93 30.644 6.303 0.12500 22.0100 <td></td>										
0.1050020.0022.927500.034260.035553.20230.002507.0037.4135.924.21516.81438.130.11000206.0023.788330.035540.002304.1002508.004.0114.4195.00420.01740.640.11150205.0024.20870.036800.02585.887310.002508.5045.73153.745.39424.62344.160.11150204.0024.528170.036800.02585.887310.0025015.0051.04164.286.15844.62448.160.12250201.0025.448550.038400.02511.005556.32173.876.98827.59455.140.12500201.0025.44850.038000.041848.615260.0025011.0056.32173.876.98827.59455.630.12750199.0026.53990.039800.044388.615260.0025011.0056.32173.876.98331.04555.630.13750199.0026.53290.040380.045339.376190.0025013.0067.9319.4.408.62334.49465.480.13750195.0027.77750.041500.657410.0025015.0077.1420.44335.78067.930.14500195.0027.77550.041600.057411.64140.0025015.0077.1420.4438.5250.13250194.0028.52200.042600.057411.										
0.10750 207.00 23.36054 0.01491 0.01495 3.67574 0.00250 7.50 40.11 14.611 18.444 38.13 0.11100 205.00 24.21087 0.03618 0.00220 8.50 45.73 153.74 5.394 21.075 43.16 0.11150 203.00 25.04021 0.03741 0.0280 5.8871 0.00250 9.50 51.04 164.28 6.158 24.522 48.16 0.12000 25.04485 0.03862 0.03941 7.18856 0.00250 10.05 5.61 5.633 7.57 48.16 5.633 0.12500 201.00 26.63590 0.03980 0.04184 8.61526 0.00250 11.05 11.75 7.283 31.464 6.303 0.13000 199.00 27.04225 0.04038 10.1672 0.00250 12.00 64.19 186.73 7.956 31.866 6.057 0.13000 199.00 27.01270 0.04038 10.04250 10.00250 16.00 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
0.11250 205.00 24.21077 0.02281 4.71820 0.00280 8.50 45.73 153.14 5.94 21.575 43.16 0.11500 203.00 25.04021 0.02860 0.02860 9.00 48.39 159.14 5.178 25.144 45.66 0.12200 202.00 25.44855 0.03862 0.03491 7.18856 0.00250 10.00 58.65 173.87 7.58 29.594 53.14 0.12500 200.00 26.64855 0.03860 0.04184 8.61526 0.00220 11.00 58.95 182.64 7.611 30.445 58.10 0.13000 199.00 27.0175 0.04034 0.04938 10.1672 0.00250 12.50 66.79 190.65 8.294 31.176 63.03 0.13000 195.00 28.1755 0.04144 10.66217 13.50 71.98 194.40 8.523 3.796 67.93 0.14000 194.00 8.5246 0.04266 0.66144 12.7942 0.0250 14.50 70.783 81.525 72.79 0.14100 19										
0.11500 204.00 24.62817 0.02568 5.28771 0.0220 9.00 48.39 159.14 55.779 23.114 45.66 0.12020 202.00 25.44701 0.02802 0.03168 6.52297 0.00220 10.00 53.68 169.19 6.532 26.126 50.66 0.12250 200.00 26.24855 0.03820 0.0418 8.6126 0.00250 11.00 56.95 178.35 7.358 29.034 55.63 0.12750 199.00 26.6350 0.03800 0.04184 8.6126 0.00250 11.00 51.94 186.73 7.956 31.826 60.57 0.12500 197.00 27.0225 0.004104 0.04281 10.16872 0.00250 13.00 63.91 194.63 8.623 34.446 65.48 0.13750 195.00 28.14766 0.04260 0.05318 10.99275 0.00250 13.00 64.23 34.454 65.48 0.14500 28.14266 0.044260 0.06574 11.84619 0.00250 13.00 74.53 23.54 37.378 38.25										
0.11750 203.00 25.04021 0.03741 0.0280 9.50 51.04 164.28 6.152 26.322 6.56.32 0.12000 25.44855 0.03862 0.03491 7.18856 0.00250 10.50 56.32 17.3.87 6.898 27.554 55.1.64 0.12500 200.00 25.44855 0.03280 0.04184 8.61526 0.00250 11.50 61.57 182.64 7.611 30.445 58.10 0.13500 199.00 26.63590 0.04384 8.61526 0.00250 12.50 66.19 196.63 2.243 31.76 61.03 0.13500 195.00 28.1746 0.04264 0.0257 13.00 18.57 7.958 39.443 8.632 0.13500 195.00 28.1740 0.04260 0.0574 11.48419 0.00250 13.50 71.59 9.45 35.704 7.79 0.14500 195.00 28.1740 0.04361 0.30250 14.50 77.12 20.748 9.453 37										
0.12000 202.00 25.44701 0.03168 6.52297 0.00250 10.00 55.46 16.919 6.532 26.126 50.66 0.12250 200.00 26.24485 0.03800 7.88602 0.00250 11.00 58.95 178.35 7.258 29.034 55.63 0.12750 199.00 26.63590 0.03800 0.04843 8.61226 0.00250 11.00 58.95 178.35 7.258 29.034 55.63 0.13000 199.00 27.40225 0.04038 0.04453 9.37619 0.00250 12.00 66.19 186.73 7.956 31.262 66.79 0.13500 195.00 27.1775 0.04105 0.0554 11.4819 0.00250 13.00 71.98 197.99 8.945 35.780 67.93 0.14000 28.17196 0.04114 0.06331 15.502 79.702 20.788 38.613 37.21 0.14500 29.052262 0.04314 0.06250 15.500 79.70 20.788 38.613 37.321 0.14501 191.00 28.57532 0.0419										
0.12250 201.00 25.44855 0.03491 7.18856 0.00250 10.5 56.32 173.87 6.898 27.594 55.14 0.12500 199.00 26.63590 0.03380 0.04184 8.61526 0.00250 11.00 58.51 185.57 7.555 31.826 60.57 0.13000 196.00 27.02170 0.04094 0.04938 10.16872 0.00250 12.00 66.157 180.63 7.611 30.445 58.01 0.13500 196.00 27.77755 0.04150 0.0538 10.99275 0.00250 13.50 197.99 8.945 35.706 67.33 0.14000 194.00 28.51240 0.00254 11.4819 0.00250 14.50 77.14 20.42 55.63 30.441 70.36 0.14250 193.00 28.51240 0.00254 14.50 77.15 201.43 9.256 31.374 70.36 0.14250 193.00 28.51240 0.00254 14.50 71.5 81.60 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
$\begin{array}{c} 0.12500 \\ 0.12750 \\ 0.12750 \\ 0.900 \\ 0.26, 63590 \\ 0.0380 \\ 0.04380 \\ 0.0453 \\ 0.0453 \\ 0.0453 \\ 0.0453 \\ 0.0453 \\ 0.0250 \\ 1.2,50 \\ 0.0250 \\ 1.2,50 \\ 0.6,7 \\ 1.50 \\ 1.50 \\ 1$										
$\begin{array}{c} 0.12750 & 199.00 & 26.63590 & 0.03980 & 0.04184 & 8.61526 & 0.00250 & 11.05 & 61.57 & 182.64 & 7.611 & 30.445 & 58.10 \\ 0.13000 & 198.00 & 27.02170 & 0.04038 & 0.0453 & 9.3719 & 0.00250 & 12.50 & 66.79 & 190.65 & 8.294 & 33.176 & 63.03 \\ 0.13500 & 196.00 & 27.77755 & 0.04150 & 0.0533 & 10.99275 & 0.00250 & 13.50 & 71.98 & 197.99 & 8.945 & 35.780 & 67.93 \\ 0.13750 & 195.00 & 28.17476 & 0.04260 & 0.0574 & 11.84819 & 0.00250 & 13.50 & 71.4 & 204.72 & 9.564 & 38.255 & 77.03 \\ 0.14200 & 195.00 & 28.1716 & 0.04131 & 0.06630 & 13.65284 & 0.00250 & 14.50 & 77.71 & 204.72 & 9.564 & 38.255 & 77.79 \\ 0.14500 & 192.00 & 29.22626 & 0.0437 & 0.0791 & 14.60184 & 0.0250 & 15.50 & 82.62 & 10.90 & 10.150 & 0.559 & 0.0470 & 0.0858 & 16.59260 & 15.50 & 82.62 & 10.90 & 10.150 & 0.599 & 77.62 \\ 0.15000 & 190.00 & 29.91913 & 0.04470 & 0.08058 & 16.59260 & 0.00250 & 16.50 & 87.33 & 213.60 & 10.451 & 41.723 & 80.02 \\ 0.15333 & 189.00 & 30.42303 & 0.04470 & 0.08058 & 16.59260 & 0.00333 & 17.00 & 89.86 & 218.91 & 10.736 & 42.944 & 84.79 \\ 0.16600 & 187.00 & 31.40984 & 0.04639 & 0.09619 & 19.8080 & 0.00333 & 17.00 & 89.86 & 216.91 & 10.736 & 42.944 & 84.79 \\ 0.16607 & 185.00 & 32.36855 & 0.04037 & 0.1074 & 22.10478 & 0.00333 & 18.00 & 94.47 & 219.66 & 11.010 & 44.545 & 91.87 \\ 0.17007 & 184.00 & 33.29746 & 0.04976 & 0.11908 & 24.5095 & 0.00333 & 17.00 & 89.86 & 216.91 & 10.736 & 45.471 & 96.53 \\ 0.17667 & 185.00 & 33.2946 & 0.04976 & 0.11908 & 24.5095 & 0.00333 & 15.00 & 104.72 & 224.21 & 11.467 & 45.955 & 10.471 \\ 0.18033 & 180.00 & 34.64220 & 0.05110 & 0.13139 & 27.05612 & 0.00333 & 20.50 & 107.19 & 223.20 & 11.255 & 45.021 & 94.20 \\ 0.1733 & 183.00 & 34.64220 & 0.05176 & 0.13776 & 23.86794 & 0.00333 & 21.50 & 102.30 & 223.20 & 11.255 & 45.021 & 94.20 \\ 0.17667 & 176.00 & 37.23094 & 0.05577 & 0.2577 & 32.4749 & 0.0033 & 21.50 & 102.71 & 11.888 & 47.352 & 107.18 \\ 0.2000 & 177.00 & 37.23094 & 0.05572 & 0.15092 & 31.07930 & 20.033 & 21.50 & 101.62 & 228.12 & 11.667 & 46.677 & 103.44 \\ 0.2000 & 176.00 & 37.23094 & 0.05573 & 0.15092 $										
0.13800 197.00 27.02170 0.04038 0.04553 9.37619 0.00250 12.50 66.79 190.65 8.294 33.176 63.03 0.13250 197.00 27.07755 0.04120 0.05338 10.16927 0.00250 13.00 69.39 194.40 8.623 34.494 65.48 0.13450 194.00 28.51240 0.04206 0.05784 11.84819 0.00250 13.00 69.39 194.40 8.623 34.494 65.48 0.14400 194.00 28.51240 0.04260 0.06141 12.73492 0.00250 14.00 74.57 201.43 9.256 37.034 70.36 0.14500 192.00 29.2626 0.04470 0.0858 16.59260 16.00 87.33 21.5.40 10.507 42.349 80.02 0.15001 190.00 29.91913 0.04620 0.9064 18.70623 0.00333 17.50 82.37 18.31 10.877 43.347 43.17 80.02 0.1500 19.003 39.993 0.04620 0.9064 18.70623 0.00333 17.50 </td <td></td>										
0.13250 197.00 27.40225 0.04094 0.04938 10.16672 0.00250 13.00 66.7.9 190.65 8.294 33.176 63.03 0.13500 195.00 28.14760 0.04260 0.05754 11.84819 0.00250 13.00 71.98 197.99 8.945 35.780 67.93 0.14400 194.00 28.51240 0.04260 1.65244 0.00250 14.50 71.74 204.72 9.564 38.257 72.79 0.14500 192.00 29.22626 0.04347 0.05658 16.52840 0.00250 15.50 79.70 207.88 9.861 39.443 75.21 0.14500 190.00 29.57532 0.04470 0.06058 16.59260 0.00333 17.00 84.80 21.3.80 10.431 41.723 80.02 0.15331 189.00 0.04546 0.06058 16.59260 0.00333 17.00 84.80 21.81 10.1633 81.00 43.97 21.44 44.79 0.15031 180.00 31.4094 0.04693 0.0914 18.70633 18.00 84.87<										
0.13750 195.00 28.14760 0.04260 0.06754 11.84819 0.00250 14.00 74.57 201.43 9.258 37.034 70.36 0.14200 193.00 28.87196 0.04314 0.06501 13.65284 0.00250 14.50 77.14 204.72 9.554 38.255 72.79 0.14500 192.00 29.22526 0.04367 0.07051 15.508 0.00250 15.00 77.17 20.788 9.861 39.443 75.21 0.14500 190.00 29.91913 0.04470 0.08058 16.59260 0.00250 15.50 82.26 210.09 10.736 42.944 84.79 0.15031 180.00 30.9193 0.04620 0.0904 18.70623 0.00333 17.50 92.37 218.33 10.877 43.507 87.16 0.16637 185.00 31.40984 0.04675 0.1074 22.10478 0.00333 18.50 97.36 220.92 11.136 44.545 91.67 0.17667 182.00 33.7548 0.05044 0.12516 25.77373 0.00333 19	0.13250 197.00 27.40225		10.16872	0.00250				8.294		
0.14000 193.00 28.51240 0.04314 0.06630 13.65284 0.00250 14.00 74.57 201.433 9.258 37.034 70.36 0.14250 193.00 28.22626 0.04317 0.07091 14.60184 0.00250 15.00 77.14 204.72 9.564 39.243 75.21 0.14750 191.00 29.57532 0.04449 0.07567 15.58180 0.00250 15.00 82.26 210.90 10.431 17.23 80.02 0.15001 190.00 29.57532 0.04470 0.80858 16.59260 0.00250 15.00 84.80 10.431 17.23 80.02 0.15667 188.00 0.91993 0.04620 0.09641 18.76623 0.00333 17.50 92.37 218.33 10.877 43.507 87.16 0.16607 185.00 31.832944 0.04765 0.10170 20.9170 0.00333 18.00 94.87 219.66 11.010 44.040 89.52 0.16676 185.00 33.7548 0.04976 0.11314 23.29791 0.00333 19.00 <td< td=""><td>0.13500 196.00 27.77755</td><td>0.04150 0.05338</td><td>10.99275</td><td>0.00250</td><td>13.00</td><td>69.39</td><td>194.40</td><td>8.623</td><td>34.494</td><td>65.48</td></td<>	0.13500 196.00 27.77755	0.04150 0.05338	10.99275	0.00250	13.00	69.39	194.40	8.623	34.494	65.48
0.14250 193.00 28.87196 0.04367 0.067091 14.60184 0.00250 15.00 77.14 204.72 9.564 38.255 72.79 0.14500 192.00 29.57532 0.04419 0.07567 15.58180 0.00250 15.50 82.26 210.90 10.150 40.599 77.62 0.15000 190.00 29.59131 0.04540 0.08563 17.63412 0.00333 16.50 87.33 215.40 10.4577 42.349 82.41 0.15637 188.00 30.9193 0.04663 0.09619 19.8080 0.00333 17.50 92.37 218.31 10.0577 42.349 82.41 0.16667 185.00 31.28054 0.04765 0.10174 22.10478 0.00333 18.50 97.36 220.92 11.356 45.451 96.52 0.17667 185.00 33.2946 0.04976 0.11304 22.10478 0.00333 19.50 102.30 23.20 11.356 45.21 94.00 0.1767 <td>0.13750 195.00 28.14760</td> <td>0.04206 0.05754</td> <td>11.84819</td> <td>0.00250</td> <td>13.50</td> <td>71.98</td> <td>197.99</td> <td>8.945</td> <td>35.780</td> <td>67.93</td>	0.13750 195.00 28.14760	0.04206 0.05754	11.84819	0.00250	13.50	71.98	197.99	8.945	35.780	67.93
0.14500 192.00 29.22267 0.04417 0.07057 15.58180 0.00250 15.00 79.70 207.88 9.861 39.443 75.21 0.14750 191.00 29.57532 0.04419 0.07567 15.58180 0.00250 15.50 82.26 210.90 10.150 40.599 77.62 0.15000 199.00 30.42303 0.04560 0.08058 17.63412 0.00333 16.50 87.33 215.40 10.587 42.349 82.41 0.15667 188.00 31.49944 0.04693 0.09619 18.0623 0.00333 17.50 92.37 218.33 10.877 43.507 87.16 0.16667 185.00 31.89274 0.04676 0.10714 22.10478 0.00333 18.50 94.87 219.66 11.010 44.549 91.87 0.16677 185.00 33.75438 0.05044 0.12516 25.7737 0.00333 19.50 102.30 221.242 11.474 45.895 98.84 0.18000 181.00 34.2229 0.05141 0.13139 27.05612 0.00333	0.14000 194.00 28.51240	0.04260 0.06184	12.73492	0.00250	14.00	74.57	201.43	9.258	37.034	70.36
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.14250 193.00 28.87196	0.04314 0.06630	13.65284	0.00250	14.50	77.14	204.72	9.564	38.255	72.79
0.15000190.0029.919130.044700.0805816.592600.0025016.0084.80213.8010.43141.72380.020.15333189.0030.423030.045460.0856317.634120.0033317.0088.6216.9110.73642.94484.790.15067188.0031.409840.046930.0908118.006230.033317.5092.37218.3310.87743.50787.160.16633186.0031.892740.047650.1017020.941700.0033318.5097.36220.9211.13644.54591.870.16667185.0032.287550.049070.1131423.297910.0033319.0099.83222.0911.25545.02194.200.17667182.0033.754380.050440.1251625.773730.0033321.00104.75224.2411.47445.89598.840.18000181.0034.642200.051760.1337623.079400.0033321.5010.23223.2111.36646.295101.150.18667179.0035.07120.05350.1592331.079300.0033321.50112.03226.9811.75647.022105.710.19000178.0035.923950.053650.1597231.079300.0033321.50112.63228.5111.91547.660110.230.19667176.0036.38670.053550.1597232.478490.0033323.5012.164229.81	0.14500 192.00 29.22626	0.04367 0.07091	14.60184	0.00250	15.00	79.70	207.88	9.861	39.443	75.21
0.15333189.0030.423030.045460.0856317.634120.0033316.5087.33215.4010.58742.34982.410.15667188.0030.919930.046200.0908418.706230.0033317.5089.86216.9110.73642.94484.790.16333186.0031.409840.046750.1017020.941700.0033318.5094.87219.6611.01044.04089.520.16667185.0032.386550.049760.1131423.29710.0033319.0094.87219.6611.01044.54591.870.1700184.0032.837550.049760.1190824.520950.0033319.5097.36220.9211.36845.47196.530.17667182.0033.75480.050440.1251625.773730.0033320.50107.19225.2111.67446.670103.440.18000181.0034.62200.051760.1377628.367940.0033321.50112.03226.9811.75447.02210.5710.19001178.0035.504730.053680.1577221.478490.0033322.50116.42228.5111.9847.352107.980.19333177.0035.923950.053680.1577221.478490.0033322.50116.82228.5111.91547.660110.230.19667176.0036.36870.055270.1789435.064070.033323.50121.54229.64	0.14750 191.00 29.57532	0.04419 0.07567	15.58180	0.00250	15.50	82.26	210.90	10.150	40.599	77.62
0.15667188.0030.919930.046200.0908418.706230.0033317.0089.86216.9110.73642.94484.790.16000187.0031.409840.046930.0961919.808800.0033317.5092.37218.3310.87743.50787.160.16637185.0032.368650.048360.1073422.104780.0033318.5094.87219.6611.01044.04089.520.16667185.0032.368650.049070.1131423.297910.0033318.5097.36220.9211.36444.54591.870.17030184.0032.837550.049070.1131423.297910.0033319.0099.83222.0911.25545.02194.200.17667182.0033.754380.050440.1251625.773730.0033320.00104.75224.2411.47445.89598.840.18000181.0034.642200.051760.1313927.056120.0033321.00109.62226.1211.66746.670103.440.18667179.0035.07120.052410.1442729.709060.033322.00114.43227.7711.83847.352107.980.1933177.0035.923950.053680.1577232.478490.003322.00114.43227.7711.83847.352107.980.20500174.0036.386470.055270.171335.363060.033323.50116.82238.51	0.15000 190.00 29.91913	0.04470 0.08058	16.59260	0.00250	16.00	84.80	213.80	10.431	41.723	80.02
0.16000 187.00 31.40984 0.04693 0.09619 19.80880 0.00333 17.50 92.37 218.33 10.877 43.507 87.16 0.16333 186.00 31.89274 0.04765 0.10170 20.94170 0.00333 18.00 94.87 210.66 11.010 44.040 89.52 0.16667 185.00 32.36855 0.04907 0.11314 23.29791 0.00333 19.00 99.83 222.09 11.255 45.021 94.20 0.17333 183.00 33.75438 0.05014 0.11908 24.52095 0.00333 19.00 99.83 222.09 11.255 45.021 94.20 0.17667 182.00 33.75438 0.05014 0.13139 27.05612 0.00333 20.50 107.19 225.21 11.674 46.295 101.15 0.18607 179.00 35.0712 0.05241 0.14427 29.7096 0.00333 21.00 109.62 226.12 11.667 46.670 103.44 0.18607 177.00 35.92395 0.05368 0.15772 32.47849 0.00333										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
0.16667185.0032.368650.048360.1073422.104780.0033318.5097.36220.9211.13644.54591.870.17000184.0032.837550.049070.1131423.297910.0033319.0099.83222.0911.25545.02194.200.17333183.0033.29460.049760.1190824.520950.0033319.50102.30223.2011.36845.47196.530.17667182.0033.754380.050440.1251625.773730.0033320.00104.75224.2411.47445.89598.840.18000181.0034.202290.051100.1313927.056120.0033321.00109.62226.1211.67746.295101.150.18333180.0036.643200.051760.1377628.367940.0033322.00114.43227.7711.88847.352107.980.19000178.0035.504030.053050.1509231.079300.0033323.00119.19229.2011.91547.660110.230.19667176.0036.36870.055490.1717335.63060.033323.00119.19229.2011.98747.947112.470.20500173.0037.230940.055330.1862938.361380.0025024.00123.89231.3712.21548.862116.900.20500173.0037.230940.055330.1862938.361380.0025025.00128.53 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
0.17000184.0032.837550.049070.1131423.297910.0033319.0099.83222.0911.25545.02194.200.17333183.0033.299460.049760.1190824.520950.0033319.50102.30223.2011.36845.47196.530.17667182.0033.754380.050440.1251625.773730.0033320.00104.75224.2411.47445.89598.840.18000181.0034.202290.051100.1313927.056120.0033321.00109.62226.1211.66746.670103.440.18667179.0035.077120.052410.1442729.709060.0033321.00109.62226.1211.66747.022105.710.19333177.0035.504300.053500.1509231.079300.0033322.00114.43227.7711.83847.52107.980.19333177.0035.923950.053680.1577232.478490.0033323.00119.19229.2011.98747.947112.470.20000175.0036.742790.054900.1717335.363060.0033323.50121.54229.8412.05448.62116.900.20500173.0037.230940.055730.1789436.848090.0025024.50126.2232.85612.26650.664123.450.21250170.0037.923810.05670.201339.902740.0025025.5013.62 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
0.17333183.0033.299460.049760.1190824.520950.0033319.50102.30223.2011.36845.47196.530.17667182.0033.754380.050440.1251625.773730.0033320.00104.75224.2411.47445.89598.840.18000181.0034.202290.051100.1313927.056120.0033321.00109.62226.1211.57446.6295103.1440.18667179.0035.077120.052410.1442729.709060.0033321.00109.62226.1211.97647.022105.710.19000178.0035.504030.053050.1509231.079300.0033322.00114.43227.7711.83847.352107.980.19333177.0035.923950.05480.1577232.478490.0033323.00119.19229.2011.98747.94711.2370.20000175.0036.742790.054900.1717335.363060.0033323.50121.54229.8412.05448.214114.690.20250174.0036.989490.055270.1786430.025024.00128.59231.37149.486119.100.20500173.0037.230940.056330.2013941.471990.0025025.00136.82234.2512.52550.0664123.450.21500167.0037.923810.056670.2091543.068440.0025025.50130.82235.6012.66										
0.17667182.0033.754380.050440.1251625.773730.0033320.00104.75224.2411.47445.89598.840.18000181.0034.202290.051100.1313927.056120.0033320.50107.19225.2111.57446.295101.150.18333180.0034.643200.051760.1377628.367940.0033321.00100.62226.1211.66746.670103.440.18667179.0035.504030.053050.1509231.079300.0033322.00114.43227.7711.88847.322105.710.19333177.0035.923950.053680.1577232.478490.0033322.50116.82228.5111.91547.660110.230.19667176.0036.336870.054290.1646533.906470.0033323.00119.19229.2011.98747.947112.470.20000175.0036.742790.055270.1789436.848090.0025024.00123.89231.3712.21548.861116.900.20550174.0037.467150.055380.1937739.902740.0025025.00128.53234.2512.52250.086121.280.21000171.0037.692100.056330.2013941.471990.0025025.00138.1212.93851.753127.740.21550169.0038.144260.056390.22170444.693400.0025026.00133.11236.										
0.18000181.0034.202290.051100.1313927.056120.0033320.50107.19225.2111.57446.295101.150.18333180.0034.643200.051760.1377628.367940.0033321.00109.62226.1211.66746.670103.440.18667179.0035.077120.052410.1442729.709060.0033321.50112.03226.9811.75647.022105.710.19303177.0035.504030.053050.1509231.079300.0033322.50116.62228.5111.91547.660110.230.19333177.0035.923950.053680.1577232.478490.0033323.00119.19229.2011.98747.947112.470.20000175.0036.42790.054290.1646533.906470.0033323.50121.54229.8412.05448.214114.690.20500173.0037.230940.055630.1862938.361380.0025024.00123.89231.3712.21548.862116.900.20750172.0037.467150.055980.1937739.902740.0025025.00128.53234.2512.52250.086121.280.21200171.0037.928100.056330.2013941.471990.0025025.50135.37234.2512.26650.664123.450.21250170.0037.928100.056730.2213644.693400.0025025.50135.3										
0.18333180.0034.643200.051760.1377628.367940.0033321.00109.62226.1211.66746.670103.440.18667179.0035.077120.052410.1442729.709060.0033321.50112.03226.9811.75647.022105.710.19000178.0035.504030.053050.1509231.079300.0033322.00114.43227.7711.83847.352107.980.19333177.0035.923950.053680.1577232.478490.0033322.50116.82228.5111.91547.660110.230.19667176.0036.336870.054290.1646533.906470.0033323.00119.1929.2011.98747.947112.470.20001175.0036.742790.054900.1717335.363060.0033323.50121.54229.8412.05448.214114.690.20250174.0036.989490.055270.1789436.848090.0025024.00123.89231.3712.21548.862116.900.20500173.0037.230940.055630.1862938.361380.0025025.00128.53234.2512.52250.666123.450.21250170.0037.698100.056330.2013941.471990.0025025.50130.82235.6012.26650.664123.450.21250160.0038.144260.056990.2170444.693400.0025026.50135.3										
0.18667179.0035.077120.052410.1442729.709060.0033321.50112.03226.9811.75647.022105.710.19000178.0035.504030.053050.1509231.079300.0033322.00114.43227.7711.83847.352107.980.19333177.0035.923950.053680.1577232.478490.0033322.50116.82228.5111.91547.660110.230.19667176.0036.336870.054290.1646533.906470.0033323.00119.19229.2011.98747.947112.470.20000175.0036.742790.054900.1717335.363060.0033323.50121.54229.8412.05448.214114.690.20500173.0037.230940.055630.1862938.361380.0025024.00123.89231.3712.21548.862116.900.20750172.0037.467150.055980.1937739.902740.0025025.50130.82235.6012.66650.664123.450.21000171.0037.923810.056370.2019543.068940.0025025.50130.82235.6012.66550.664123.450.21500169.0038.144260.056990.2170444.693400.0025026.50135.37238.1212.93851.753127.740.21750168.0038.359470.057630.2332148.024040.0025027.50139.										
0.19000178.0035.504030.053050.1509231.079300.0033322.00114.43227.7711.83847.352107.980.19333177.0035.923950.053680.1577232.478490.0033322.50116.82228.5111.91547.660110.230.19667176.0036.336870.054290.1646533.906470.0033323.00119.19229.2011.98747.947112.470.20000175.0036.742790.054900.1717335.363060.0033323.50121.54229.8412.05448.214114.690.20250174.0036.989490.055270.1789436.848090.0025024.00123.89231.3712.21548.862116.900.20750172.0037.467150.055980.1862938.361380.0025024.50126.22232.8512.37149.486119.100.20750170.0037.698100.056330.2013941.471990.0025025.00138.1212.52250.086121.280.21250170.0037.923810.056670.2091543.068940.0025026.00133.11236.8912.80551.220125.600.21500169.0038.144260.056990.2170444.693400.0025027.00137.62239.2913.06652.264129.860.22150166.0038.59470.057320.2250646.345160.0025027.50139.85240.4										
0.1933177.0035.923950.053680.1577232.478490.0033322.50116.82228.5111.91547.660110.230.19667176.0036.336870.054290.1646533.906470.0033323.00119.19229.2011.98747.947112.470.20000175.0036.742790.054900.1717335.363060.0033323.50121.54229.8412.05448.214114.690.20250174.0036.989490.055270.1789436.848090.0025024.00123.89231.3712.21548.862116.900.20500173.0037.230940.055630.1862938.361380.0025024.50126.22232.8512.37149.486119.100.20750172.0037.467150.055980.1937739.902740.0025025.00128.53234.2512.52250.086121.280.21000171.0037.698100.056670.2091543.068940.0025025.50130.82235.6012.66650.664123.450.21500169.0038.144260.056990.2170444.693400.0025026.50135.37238.1212.93851.720125.600.21500169.0038.59470.057320.2250646.345160.0025027.00137.62239.2913.06652.264129.860.22050166.0038.774140.057940.2414949.729830.0025027.50139.85										
0.19667176.0036.336870.054290.1646533.906470.0033323.00119.19229.2011.98747.947112.470.20000175.0036.742790.054900.1717335.363060.0033323.50121.54229.8412.05448.214114.690.20250174.0036.989490.055270.1789436.848090.0025024.00123.89231.3712.21548.862116.900.20500173.0037.230940.055630.1862938.361380.0025024.50126.22232.8512.37149.486119.100.20750172.0037.467150.055980.1937739.902740.0025025.00128.53234.2512.52250.086121.280.21000171.0037.698100.056330.2013941.471990.0025025.50130.82235.6012.66650.664123.450.21500169.0038.144260.056990.2170444.693400.0025026.00133.11236.8912.80551.220125.600.21750168.0038.359470.057630.2332148.02440.0025027.00137.62239.2913.06652.264129.860.22500166.0038.774140.057940.2414949.729830.0025028.00142.07241.4713.30553.221134.060.22500165.0038.973600.058230.2499151.462320.0025028.50144.2										
0.20000175.0036.742790.054900.1717335.363060.0033323.50121.54229.8412.05448.214114.690.20250174.0036.989490.055270.1789436.848090.0025024.00123.89231.3712.21548.862116.900.20500173.0037.230940.055630.1862938.361380.0025024.50126.22232.8512.37149.486119.100.20750172.0037.467150.055980.1937739.902740.0025025.00128.53234.2512.52250.086121.280.21000171.0037.698100.056330.2013941.471990.0025025.50130.82235.6012.66650.664123.450.21250170.0037.923810.056670.2091543.068940.0025026.00133.11236.8912.80551.220125.600.21500169.0038.144260.056990.2170444.693400.0025027.00137.62239.2913.06652.264129.860.22000167.0038.59470.057630.2332148.02440.0025027.50139.85240.4113.18852.753131.970.22250166.0038.774140.057940.2414949.729830.0025028.50144.26242.4913.41753.668136.130.22500165.0038.973600.058230.2499151.462320.0025028.50144.26										
0.20250174.0036.989490.055270.1789436.848090.0025024.00123.89231.3712.21548.862116.900.20500173.0037.230940.055630.1862938.361380.0025024.50126.22232.8512.37149.486119.100.20750172.0037.467150.055980.1937739.902740.0025025.00128.53234.2512.52250.086121.280.21000171.0037.698100.056330.2013941.471990.0025025.50130.82235.6012.66650.664123.450.21250170.0037.923810.056670.2091543.068940.0025026.00133.11236.8912.80551.220125.600.21500169.0038.144260.056990.2170444.693400.0025026.50135.37238.1212.93851.753127.740.21750168.0038.59470.057320.22250646.345160.0025027.00137.62239.2913.06652.264129.860.22250166.0038.774140.057940.2414949.729830.0025028.00142.07241.4713.30553.221134.060.22500165.0038.973600.058230.2499151.462320.0025028.50144.26242.4913.41753.668136.130.22500165.0038.973600.058520.2584553.221300.0025029.00146.										
0.20500173.0037.230940.055630.1862938.361380.0025024.50126.22232.8512.37149.486119.100.20750172.0037.467150.055980.1937739.902740.0025025.00128.53234.2512.52250.086121.280.21000171.0037.698100.056330.2013941.471990.0025025.50130.82235.6012.66650.664123.450.21250170.0037.923810.056670.2091543.068940.0025026.00133.11236.8912.80551.220125.600.21500169.0038.144260.056990.2170444.693400.0025026.50135.37238.1212.93851.753127.740.21750168.0038.359470.057320.2250646.345160.0025027.00137.62239.2913.06652.264129.860.22000167.0038.569430.057940.2332148.024040.0025027.50139.85240.4113.18852.753131.970.22500166.0038.774140.057940.2414949.729830.0025028.00142.07241.4713.30553.221134.060.22500165.0038.973600.058230.2499151.462320.0025028.50144.26242.4913.41753.668136.130.22750164.0039.167810.058520.2584553.221300.0025029.00146.										
0.20750172.0037.467150.055980.1937739.902740.0025025.00128.53234.2512.52250.086121.280.21000171.0037.698100.056330.2013941.471990.0025025.50130.82235.6012.66650.664123.450.21250170.0037.923810.056670.2091543.068940.0025026.00133.11236.8912.80551.220125.600.21500169.0038.144260.056990.2170444.693400.0025026.50135.37238.1212.93851.753127.740.21750168.0038.359470.057320.2250646.345160.0025027.00137.62239.2913.06652.264129.860.22000167.0038.569430.057630.2332148.024040.0025027.50139.85240.4113.18852.753131.970.22500166.0038.774140.057940.2414949.729830.0025028.00142.07241.4713.30553.221134.060.22500165.0038.973600.058230.2499151.462320.0025028.50144.26242.4913.41753.668136.130.22750164.0039.167810.058520.2584553.221300.0025029.00146.45243.4513.52454.094138.190.23000163.0039.356780.058810.2671255.006570.0025029.50148.										
0.21250170.0037.923810.056670.2091543.068940.0025026.00133.11236.8912.80551.220125.600.21500169.0038.144260.056990.2170444.693400.0025026.50135.37238.1212.93851.753127.740.21750168.0038.359470.057320.2250646.345160.0025027.00137.62239.2913.06652.264129.860.22000167.0038.569430.057630.2332148.024040.0025027.50139.85240.4113.18852.753131.970.22250166.0038.774140.057940.2414949.729830.0025028.00142.07241.4713.30553.221134.060.22500165.0038.973600.058230.2499151.462320.0025028.50144.26242.4913.41753.668136.130.22750164.0039.167810.058520.2584553.221300.0025029.00146.45243.4513.52454.094138.190.23000163.0039.356780.058810.2671255.006570.0025029.50148.61244.3613.62554.500140.23			39.90274	0.00250	25.00				50.086	121.28
0.21250170.0037.923810.056670.2091543.068940.0025026.00133.11236.8912.80551.220125.600.21500169.0038.144260.056990.2170444.693400.0025026.50135.37238.1212.93851.753127.740.21750168.0038.359470.057320.2250646.345160.0025027.00137.62239.2913.06652.264129.860.22000167.0038.569430.057630.2332148.024040.0025027.50139.85240.4113.18852.753131.970.22250166.0038.774140.057940.2414949.729830.0025028.00142.07241.4713.30553.221134.060.22500165.0038.973600.058230.2499151.462320.0025028.50144.26242.4913.41753.668136.130.22750164.0039.167810.058520.2584553.221300.0025029.00146.45243.4513.52454.094138.190.23000163.0039.356780.058810.2671255.006570.0025029.50148.61244.3613.62554.500140.23						130.82				
0.21750168.0038.359470.057320.2250646.345160.0025027.00137.62239.2913.06652.264129.860.22000167.0038.569430.057630.2332148.024040.0025027.50139.85240.4113.18852.753131.970.22250166.0038.774140.057940.2414949.729830.0025028.00142.07241.4713.30553.221134.060.22500165.0038.973600.058230.2499151.462320.0025028.50144.26242.4913.41753.668136.130.22750164.0039.167810.058520.2584553.221300.0025029.00146.45243.4513.52454.094138.190.23000163.0039.356780.058810.2671255.006570.0025029.50148.61244.3613.62554.500140.23	0.21250 170.00 37.92381	0.05667 0.20915	43.06894	0.00250	26.00			12.805		
0.22000167.0038.569430.057630.2332148.024040.0025027.50139.85240.4113.18852.753131.970.22250166.0038.774140.057940.2414949.729830.0025028.00142.07241.4713.30553.221134.060.22500165.0038.973600.058230.2499151.462320.0025028.50144.26242.4913.41753.668136.130.22750164.0039.167810.058520.2584553.221300.0025029.00146.45243.4513.52454.094138.190.23000163.0039.356780.058810.2671255.006570.0025029.50148.61244.3613.62554.500140.23	0.21500 169.00 38.14426	0.05699 0.21704	44.69340	0.00250	26.50	135.37	238.12	12.938	51.753	127.74
0.22250166.0038.774140.057940.2414949.729830.0025028.00142.07241.4713.30553.221134.060.22500165.0038.973600.058230.2499151.462320.0025028.50144.26242.4913.41753.668136.130.22750164.0039.167810.058520.2584553.221300.0025029.00146.45243.4513.52454.094138.190.23000163.0039.356780.058810.2671255.006570.0025029.50148.61244.3613.62554.500140.23	0.21750 168.00 38.35947	0.05732 0.22506	46.34516	0.00250	27.00	137.62	239.29	13.066	52.264	129.86
0.22500 165.00 38.97360 0.05823 0.24991 51.46232 0.00250 28.50 144.26 242.49 13.417 53.668 136.13 0.22750 164.00 39.16781 0.05852 0.25845 53.22130 0.00250 29.00 146.45 243.45 13.524 54.094 138.19 0.23000 163.00 39.35678 0.05881 0.26712 55.00657 0.00250 29.50 148.61 244.36 13.625 54.500 140.23					27.50	139.85	240.41	13.188	52.753	131.97
0.22750 164.00 39.16781 0.05852 0.25845 53.22130 0.00250 29.00 146.45 243.45 13.524 54.094 138.19 0.23000 163.00 39.35678 0.05881 0.26712 55.00657 0.00250 29.50 148.61 244.36 13.625 54.500 140.23	0.22250 166.00 38.77414		49.72983	0.00250	28.00			13.305	53.221	134.06
0.23000 163.00 39.35678 0.05881 0.26712 55.00657 0.00250 29.50 148.61 244.36 13.625 54.500 140.23										
		0.05881 0.26712					244.36	13.625	54.500	140.23

Number of - Intake Valves = 1 - Exhaust Valves = 1 Wrist Pin Offset = 0.0Intake Valve Size = 2.02 Exhaust Valve Size = 1.6 Intake Valve / Bore Ratio = 0.505 Exhaust Valve / Bore Ratio = 0.4 Intake Valve Area = 3.204739 sq. in. Exhaust Valve Area = 2.010619 sq. in. Intake Valve Stem Size = 0.375 Exhaust Valve Stem Size = 0.375 Intake Valve Stem Area = 0.110447 sq. in. Exhaust Valve Stem Area = 0.110447 sq. in. Valve Lift at which the Valve Area and Window / Curtain Area are the SAME SIZE At that point the velocity will be the same in both areas Intake Valve Lift = 0.505 Inches Exhaust Valve Lift = 0.4 Inches Intake Centerline = 116.00000 User Selected DC - Discharge Coefficient = 0.5 Throat CSA (0.91) Intake = 2.5434 sq. in. Throat CSA (0.91) Exhaust = 1.5545 sq. in. Effective Throat CSA = 0.89086 Effective Throat CSA = 0.8793 Valve Lift at which the Throat Area and Window / Curtain Area are the SAME SIZE At that point the velocity will be the same in both areas Intake Valve Lift = 0.40079 Inches Exhaust Valve Lift = 0.30927 Inches Valve Duration Time Port Time Port Piston Cylinder Valve Degrees Piston Curtain Depress- Depress- Throat Velocity ATDC Flow @ Area ion for ion for Area Lift Area cm^2 Area Travel Volume cm^2/cc Inch/Deg 28" CFM Velocity DC of 1 User DC Velocity CC 0.05600 232.00 13.63892 0.02038 0.00000 0.00000 0.00200 .00 .00 .00 .000 .000 .00 0.05800 231.00 14.06514 0.02102 0.00008 0.01637 0.00200 .50 2.71 17.65 .071 .284 2.55 0.06000 230.00 14.48716 0.02165 0.00032 0.06549 0.00200 1.00 5.41 34.11 .266 1.062 5.11 49.51 1.50 .559 2.238 0.06200 229.00 14.90497 0.02227 0.00072 0.14735 0.00200 8.12 7.66 0.06400 228.00 15.31859 0.02289 0.00127 0.26195 0.00200 2.00 10.82 63.95 .933 3.732 10.21 0.06600 227.00 15.72801 0.02350 0.00199 0.40925 0.00200 13.52 77.50 1.370 2.50 5.481 12.76 0.06800 226.00 16.13323 0.02411 0.00286 0.58926 0.00200 3.00 16.23 90.24 1.858 7.432 15.31 0.07000 225.00 16.53425 0.02471 0.00389 0.80194 0.00200 3.50 18.92 102.24 2.385 9.542 17.86 21.62 113.57 0.07200 224.00 16.93108 0.02530 0.00509 1.04727 0.00200 4.00 2.943 11.772 20.40 0.07400 223.00 17.32370 0.02588 0.006441.32522 0.00200 4.50 24.32 124.27 3.524 14.095 22.94 27.01 134.39 $0.07600 \quad 222.00 \quad 17.71212 \quad 0.02647 \quad 0.00794$ 1.63575 0.00200 5.00 4.121 16.485 25.48 0.07800 221.00 18.09635 0.02704 0.00961 1.97884 0.00200 5.50 29.69 143.98 4.730 18,921 28.02 32.38 153.07 2.35442 0.00200 220.00 18.47637 0.02761 0.01143 6.00 5.346 21.385 0.08000 30.55 0.08200 219.00 18.85220 0.02817 0.01341 2.76247 0.00200 6.50 35.06 161.70 5.966 23.864 33.08 218.00 19.22383 0.02872 0.01555 3.20293 0.00200 7.00 37.74 169.89 6.586 0.08400 26.345 35.61 0.08600 217.00 19.59125 0.02927 0.01785 3.67574 0.00200 7.50 40.41 177.69 7.205 28.819 38.13 0.08800 216.00 19.95448 0.02982 0.02030 4.18085 0.00200 8.00 43.07 185.11 7.819 31.276 40.64 0.09000 215.00 20.31351 0.03035 0.02291 4.71820 0.00200 8.50 45.73 192.18 8.428 33.710 43.16 0.09200 214.00 20.66834 0.03088 0.02568 5.28771 0.00200 9.00 48.39 198.92 9.029 36.116 45.66 213.00 21.01897 0.03141 0.02860 5.88933 0.00200 51.04 205.35 9.622 38.488 0.09400 9.50 48.16 0.09600 212.00 21.36541 0.03192 0.03168 6.52297 0.00200 10.00 53.68 211.48 10.206 40.822 50.66 0.09800 211.00 21.70764 0.03244 0.03491 7.18856 0.00200 56.32 217.34 10.779 43.116 10.50 53.14 210.00 22.04567 0.03294 0.03830 58.95 222.94 11.341 45.366 0.10000 7.88602 0.00200 11.00 55.63 0.10250 209.00 22.48921 0.03360 0.04184 8.61526 0.00250 11.50 61.57 227.18 11.777 47.107 58.10 9.37619 0.00250 0.10500 208.00 22.92750 0.03426 0.04553 12.00 64.19 231.19 12.196 48.785 60.57 0.10750 207.00 23.36054 0.03491 0.04938 10.16872 0.00250 12.50 66.79 234.99 12,600 50.400 63.03 206.00 23.78833 0.03554 0.05338 69.39 238.58 12.989 51.954 0.11000 10,99275 0,00250 13.00 65.48 0.11250 205.00 24.21087 0.03618 0.05754 11.84819 0.00250 13.50 71.98 241.99 13.362 53.449 67.93 0.11500 204.00 24.62817 0.03680 0.06184 12.73492 0.00250 74.57 245.22 13.721 54.885 70.36 14.00 0.11750 203.00 25.04021 0.03741 0.06630 13.65284 0.00250 14.50 77.14 248.28 14.066 56.265 72.79 0.12000 202.00 25.44701 0.03802 0.07091 14.60184 0.00250 15.00 79.70 251.19 14.397 57.590 75.21 15.58180 0.00250 0.12250 201.00 25.84855 0.03862 0.07567 15.50 82.26 253.95 14.715 58.861 77.62 0.12500 200.00 26.24485 0.03921 0.08058 16.59260 0.00250 16.00 84.80 256.56 15.020 60.081 80.02 17.63412 0.00250 87.33 259.05 15.312 61.249 0.12750 199.00 26.63590 0.03980 0.08563 16.50 82.41 0.13000 198.00 27.02170 0.04038 0.09084 18.70623 0.00250 17.00 89.86 261.40 15.592 62.369 84.79 92.37 263.64 15.860 63.441 265.76 16.117 64.466 0.13250 197.00 27.40225 0.04094 0.09619 19.80880 0.00250 17.50 87.16 0.13500 196.00 27.77755 0.04150 0.10170 20.94170 0.00250 18.00 94.87 89.52 0.13750 195.00 28.14760 0.04206 0.10734 22.10478 0.00250 97.36 267.78 16.362 65.447 18.50 91.87 $0.14000 \quad 194.00 \quad 28.51240 \quad 0.04260 \quad 0.11314$ 23.29791 0.00250 19.00 99.83 269.69 16.596 66.383 94.20 0.14250 193.00 28.87196 0.04314 0.11908 24.52095 0.00250 19.50 102.30 271.50 16.819 67.278 96.53 104.75 273.21 17.033 68.130 0.14500 192.00 29.22626 0.04367 0.12516 25.77373 0.00250 20.00 98.84 27.05612 0.00250 20.50 0.14750 191.00 29.57532 0.04419 0.13139 107.19 274.84 17.236 68.943 101.15 0.15000 190.00 29.91913 0.04470 0.13776 28.36794 0.00250 21.00 109.62 276.37 17.429 69.717 103.44 0.15333 189.00 30.42303 0.04546 0.14427 29.70906 0.00333 21.50 112.03 276.32 17.422 69.689 105.71 0.15667 188.00 30.91993 0.04620 0.15092 31.07930 0.00333 22.00 114.43 276.23 17.411 69.645 107.98 0.16000 187.00 31.40984 0.04693 0.15772 32.47849 0.00333 22.50 116.82 276.12 17.397 69.587 110.23 0.16333 186.00 31.89274 0.04765 0.16465 33.90647 0.00333 23.00 119.19 275.97 17.379 69.515 112.47 35.36306 0.00333 23.50 121.54 275.80 17.357 69.429 185.00 32.36865 0.04836 0.17173 0.16667 114.69 0.17000 184.00 32.83755 0.04907 0.17894 36.84809 0.00333 24.00 123.89 275.61 17.332 69.330 116.90 38.36138 0.00333 24.50 126.22 275.38 17.305 0.17333 183.00 33.29946 0.04976 0.18629 69.219 119.10 182.00 33.75438 0.05044 0.19377 39.90274 0.00333 25.00 128.53 275.14 17.274 69.095 0.17667 121.28 0.18000 181.00 34.20229 0.05110 0.20139 41.47199 0.00333 25.50 130.82 274.87 17.240 68.960 123.45 0.18333 180.00 34.64320 0.05176 0.20915 43.06894 0.00333 26.00 133.11 274.58 17.203 68.813 125.60 0.18667 179.00 35.07712 0.05241 0.21704 44.69340 0.00333 26.50 135.37 274.26 17.164 68.656 127.74 137.62 273.93 17.122 68.488 27.00 0.19000 178.00 35.50403 0.05305 0.22506 46.34516 0.00333 129.86 0.19333 177.00 35.92395 0.05368 0.23321 48.02404 0.00333 27.50 139.85 273.57 17.077 68.309 131.97 0.19667 176.00 36.33687 0.05429 0.24149 49.72983 0.00333 28.00 142.07 273.19 17.030 68.121 134.06 0.20000 175.00 36.74279 0.05490 0.24991 51.46232 0.00333 28.50 144.26 272.80 16.981 67.924 136.13 174.00 36.98949 0.05527 0.25845 53.22130 0.00250 146.45 273.50 17.069 0.20250 29.00 68.275 138.19 0.20500 173.00 37.23094 0.05563 0.26712 55.00657 0.00250 29.50 148.61 274.16 17.151 68.603 140.23

Rod Length = 5.7000

RPM = 6500

Bore = 4.0000

Stroke = 3.2500

Port Time Area		ľ	
Intake Rocker Arm Ratio	1.5		
Intake Lash	0.024		ration - Table
Degrees BTDC Intake Open	120.0	0.000	0.500
Exhaust Rocker Arm Ratio	1.5	0.010	0.600
Exhaust Lash	0.03	0.020	0.650
Degrees BBDC	340.0	0.040	0.700
Exhaust Open	040.0	0.050	0.750
Set Lift Table	Done	0.100	0.800
Only used by the Port	Time Area2 / Graphing	0.150	0.850
Intake Valve Angle	23.0	0.200	0.900
Exhaust Valve Angle	23.0	0.250	0.950
LSA Increase	0.0	0.300	1.000
Decrease (-) Advance Retard (-) /		0.350	1.050
Intake	0.0	0.400	1.100
Advance Retard (-) / Exhaust DOHC	0.0	0.450	1.150
🗖 Metric	🗖 ронс		
Valve to Piston Clearance @ TDC	0.0	Skip	Done

Increasing Degrees BTDC will Advance the ICL Decreasing Degrees BTDC will Retard the ICL. Increasing Degrees BBDC will Retard the ECL Decreasing Degrees BBDC will Advance the ECL. Once you have the Intake and exhaust lobes positioned correctly you can advance or retard and or increase or decrease the LSA.

Valve Angle is needed to correctly calculate the vertical and horizontal part of the valve lift.

NOTE: Since you can now change the Cam Lift Duration Table, if you either change the position of 0.010, 0.020, and 0.050 or remove any of them the Major and Minor Intensity will not be correct.

With the change to the Cam Lift Duration Table the Metric check box will not these value now. The User must enter their own Metric lift numbers. You can also copy and paste the below numbers using a text editor and create a parameter file, which can then read into CARFOR.

;------Lift Table = 0.0Lift Table = 0.25Lift Table = 0.5Lift Table = 1.0Lift Table = 1.0Lift Table = 1.5Lift Table = 2.5Lift Table = 3.0Lift Table = 3.5Lift Table = 4.0Lift Table = 4.5Lift Table = 5.0Lift Table = 5.5Lift Table = 6.0Lift Table = 6.5Lift Table = 7.0Lift Table = 7.5Lift Table = 8.0

Lift Table = 8.5Lift Table = 9.0Lift Table = 9.5Lift Table = 10.5Lift Table = 10.5Lift Table = 11.0 Lift Table = 11.5Lift Table = 12.0Lift Table = 12.5Lift Table = 13.0;---------EXAMPLE--C1 File - Header Information PVN.ICL.ECL = 1.006.113.2.113.2 0.050 Overlap = 28Intake 0.050 Open = 12 Close = 60.6 Duration = 252.6 Intake Cam Lift = .35807 Valve Lift = .6302 Area = 30.86 Exhaust 0.050 Open = 60.5 Close = 16 Duration = 256.5 Exhaust Cam Lift = .36339 Valve Lift = .63956 Area = 31.72 Stroke = 3.2500 Rod Length = 5.7000Bore = 4.0000RPM = 6500Number of - Intake Valves = 1 - Exhaust Valves = 1 Wrist Pin Offset = 0.0 Intake Valve Size = 2.055 Exhaust Valve Size = 1.6 Intake Valve / Bore Ratio = 0.51375 Exhaust Valve / Bore Ratio = 0.4 Intake Valve Area = 3.316756 sq. in. Exhaust Valve Area = 2.010619 sq. in. Intake Valve Stem Size = 0.3415 Exhaust Valve Stem Size = 0.3415 Intake Valve Stem Area = 0.091595 sq. in. Exhaust Valve Stem Area = 0.091595 sq. in. Valve Lift at which the Valve Area and Window / Curtain Area are the SAME SIZE At that point the velocity will be the same in both areas Intake Valve Lift = 0.51375 Inches Exhaust Valve Lift = 0.4 Inches Intake Centerline = 111.0 User Selected DC - Discharge Coefficient = 0.5 Throat CSA (0.91) Intake = 2.6550 sq. in. Throat CSA (0.91) Exhaust = 1.5734 sq. in. Effective Throat CSA = 0.8947 Effective Throat CSA = 0.88462 Valve Lift at which the Throat Area and Window / Curtain Area are the SAME SIZE At that point the velocity will be the same in both areas Intake Valve Lift = 0.41125 Inches Exhaust Valve Lift = 0.31302 Inches INTAKE Rocker Arm Ratio = 1.500 Valve Lash = 0.0240Valve Angle = 23.0 Valve Crank Time Time Valve Valve Valve Piston Cylinder User L/D Cam Lift Lift Angle Port Port Velocity Acceler Lift Lift Travel Volume Supplied Valve Ratio Area Area FPS ation Vert Horiz cc Air Discharge cm^2 cm^2/cc FPS² Flow Coefficient 0.0000 -0.0240 -120.0 0.0000 0.0000 0.0020 -0.0210 -110.0 0.9750 3.8025 0.0050 -0.0165 -100.0 1.4625 1.9013 0.0070 -0.0135 -90.0 0.9750 -1.9013 0.0100 -0.0090 -80.0 1.4625 1.9013 0.0130 -0.0045 -70.0 1.4625 0.0000 0.0160 0.0000 -60.0 0.0000 0.0000 1.4625 0.0000 0.0000 0.0000 0.9890 203.652 .00-1.#IND 0.0000 0.0220 0.0090 -50.0 0.0961 0.0001 2.9250 5.7038 0.0083 0.0035 0.7181 147.867 5.90 0.6951 0.0044 98.165 16.70 0.6951 0.0124 56.818 33.41 0.6951 0.0248 5.3625 9.5063 0.0235 0.0100 0.4767 8.2875 11.4075 0.0469 0.0199 0.2759 0.0330 0.0255 -40.0 0.2723 0.0004 0.0500 0.0510 -30.0 0.5447 0.0008 0.0780 0.0930 -20.0 0.9932 0.0015 13.6500 20.9138 0.0856 0.0363 0.1252 25.774 60.92 0.6951 0.0453 0.1150 0.1485 -10.0 1.5860 0.0024 18.0375 17.1113 0.1367 0.0580 0.0317 6.523 97.27 0.6951 0.0723
 0.1450
 0.1935
 TDC
 2.0665
 0.0031
 14.6250
 -13.3088
 0.1781
 0.0756
 0.0000

 0.1800
 0.2460
 10.0
 2.6272
 0.0039
 17.0625
 9.5063
 0.2264
 0.0961
 0.0317
 .000 126.74 0.6951 0.0942 6.523 157.22 0.6782 0.1197 0.2150 0.2985 20.0 3.1879 0.0048 17.0625 0.0000 0.2748 0.1166 0.1252 25.774 187.15 0.6653 0.1453 30.0 3.7486 0.0056 17.0625 0.0000 0.3231 0.1371 0.2759 40.0 4.2452 0.0063 15.1125 -7.6050 0.3659 0.1553 0.4767 56.818 209.42 0.6332 0.1708 0.2500 0.3510 0.2810 0.3975 98.165 228.95 0.6112 0.1934 0.3100 0.4410 50.0 4.7098 0.0070 14.1375 -3.8025 0.4059 0.1723 0.7181 147.867 242.30 0.5831 0.2146 0.3340 0.4770 60.0 5.0943 0.0076 11.7000 -9.5062 0.4391 0.1864 0.9890 203.652 253.10 0.5631 0.2321 0.3500 0.5010 70.0 5.3506 0.0080 7.8000 -15.2100 0.4612 0.1958 1.2776 263.083 260.13 0.5510 0.2438 8.2875 1.9013 0.4846 0.2057 1.5721 323.732 263.45 0.5310 0.2562 80.0 5.6229 0.0084 0.3670 0.5265 90.0 5.8152 0.0087 5.8500 -9.5062 0.5012 0.2128 1.8615 383.340 265.79 0.5180 0.2650 0.3790 0.5445 0.3850 0.5535 100.0 5.9113 0.0088 2.9250 -11.4075 0.5095 0.2163 2.1364 439.948 266.96 0.5118 0.2693 0.3880 0.5580 110.0 5.9593 0.0089 1.4625 -5.7037 0.5136 0.2180 2.3891 491.983 267.54 0.5088 0.2715 0.3860 0.5550 120.0 5.9273 0.0089 -0.9750 -9.5063 0.5109 0.2169 2.6140 538.281 267.15 0.5108 0.2701 0.3800 0.5460 130.0 5.8312 0.0087 -2.9250 -7.6050 0.5026 0.2133 2.8071 578.059 265.98 0.5170 0.2657 0.3690 0.5295 140.0 5.6550 0.0084 -5.3625 -9.5063 0.4874 0.2069 2.9663 610.847 263.84 0.5288 0.2577 0.3520 0.5040 150.0 5.3826 0.0080 -8.2875 -11.4075 0.4639 0.1969 3.0905 636.413 260.52 0.5486 0.2453 0.3320 0.4740 160.0 5.0622 0.0076 -9.7500 -5.7038 0.4363 0.1852 3.1792 654.672 252.20 0.5646 0.2307 0.3090 0.4395 170.0 4.6938 0.0070 -11.2125 -5.7038 0.4046 0.1717 3.2323 665.615 241.85 0.5840 0.2139

0.2820 0.3990		2613 0.0064	12 1625	7 6050	0 3673	0 1550	2 2500	660 250	229.58 0.6106 0.1942	.
0.2500 0.3510			-15.6000						209.42 0.6332 0.1708	
0.2140 0.2970									186.29 0.6656 0.144	
0.1800 0.2460			-16.5750						157.22 0.6782 0.119	
0.1450 0.1935					0.1781	0.0756		610.847	126.74 0.6951 0.0942	
0.1110 0.1425	230.0 1.5	5219 0.0023	-16.5750	1.9013	0.1312	0.0557	2.8071	578.059	93.34 0.6951 0.0693	3
0.0820 0.0990	240.0 1.0	0.0016	-14.1375	9.5062	0.0911	0.0387	2.6140	538.281	64.85 0.6951 0.0482	2
0.0500 0.0510	250.0 0.5	5447 0.0008	-15.6000	-5.7037	0.0469	0.0199	2.3891	491.983	33.41 0.6951 0.0248	3
0.0350 0.0285	260.0 0.3	3044 0.0005	-7.3125	32.3213	0.0262	0.0111	2.1364	439.948	18.67 0.6951 0.013	9
0.0240 0.0120	270.0 0.1	282 0.0002	-5.3625	7.6050	0.0110	0.0047	1.8615	383.340	7.86 0.6951 0.0058	3
0.0170 0.0015	280.0 0.0	160 0.0000	-3.4125	7.6050	0.0014	0.0006	1.5721	323.732	.98 0.6951 0.000	7
0.0140 -0.0030			-1.4625							
0.0110 -0.0075			-1.4625							
0.0090 -0.0105			-0.9750	1.9013						
0.0070 -0.013			-0.9750	0.0000						
0.0040 -0.0180				-1.9013						
0.0010 -0.0225			-1.4625							
0.0000 -0.0240			-0.4875							
0.0000 -0.0240			0.0000	1.9013						
Totals	109.8	3314 0.1641							80027	
									ycle VE = 1.44701	
Max Total	CFM Sq In Aı	rea = Valve :	Duration (@ 0.000 *	146 (On	ly good	if head	flow is	@ 28" of Water)	
Max Total	CFM Sq In Aı	ea = 50126.	67							
Total CFM	Sq In Throat	: Area = 301	42.00							
Total CFM	Sq In Net Va	alve Area (V	alve Area	- Valve a	Stem Are	a) = 24	813.43			
Total CFM	Sq In Valve	Area = 2412	8.19							
Intake BTDC (]	VO to TDC) =	5.559								
Intake Pumping	(TDC to BDC	2) = 91.152								
Intake Ramming										
-	•	-,								
Intake Overlag	(TVO to EVC	(1) = 24.078								
Intake Overlag	(IVO to EVO	2) = 24.078								
_			uration							
VALVE Lift	Opens	Closes D	uration	Area						
VALVE Lift	Opens Deg BTDC	Closes D Deg ABDC		Area						
VALVE Lift	Opens Deg BTDC 00 60.00	Closes D Deg ABDC 103.33	343.33	54.19						
VALVE Lift 0.000 0.000	Opens Deg BTDC 00 60.00 00 53.33	Closes D Deg ABDC 103.33 95.71	343.33 329.05	54.19 54.11						
VALVE Lift 0.000 0.000 0.010	Opens Deg BTDC 00 60.00 00 53.33 00 49.39	Closes D Deg ABDC 103.33 95.71 91.90	343.33 329.05 321.30	54.19 54.11 54.09						
VALVE Lift 0.000 0.000	Opens Deg BTDC 00 60.00 00 53.33 00 49.39 00 43.33	Closes D Deg ABDC 103.33 95.71 91.90 85.15	343.33 329.05 321.30 308.48	54.19 54.11 54.09 53.91						
VALVE Lift 0.000 0.000 0.010	Opens Deg BTDC 00 60.00 00 53.33 00 49.39 00 43.33	Closes D Deg ABDC 103.33 95.71 91.90 85.15	343.33 329.05 321.30	54.19 54.11 54.09						
VALVE Lift 0.000 0.000 0.010 0.020	Opens Deg BTDC 00 60.00 00 53.33 00 49.39 00 43.33 00 34.31	Closes D Deg ABDC 103.33 95.71 91.90 85.15 74.89	343.33 329.05 321.30 308.48	54.19 54.11 54.09 53.91						
VALVE Lift 0.000 0.000 0.010 0.020 0.040	Opens Deg BTDC 00 60.00 00 53.33 00 49.39 00 43.33 00 34.31 00 30.39	Closes D Deg ABDC 103.33 95.71 91.90 85.15 74.89 70.44	343.33 329.05 321.30 308.48 289.20	54.19 54.11 54.09 53.91 53.51						
VALVE Lift 0.000 0.001 0.010 0.020 0.040 0.050	Opens Deg BTDC 00 60.00 00 53.33 00 49.39 00 43.33 00 34.31 00 30.39 00 18.74	Closes D Deg ABDC 103.33 95.71 91.90 85.15 74.89 70.44 59.77	343.33 329.05 321.30 308.48 289.20 280.84	54.19 54.11 54.09 53.91 53.51 53.51						
VALVE Lift 0.000 0.010 0.020 0.044 0.050 0.100 0.150	Opens Deg BTDC 00 60.00 00 53.33 00 49.39 00 43.33 00 34.31 00 30.39 00 18.74 00 9.67	Closes D Deg ABDC 103.33 95.71 91.90 85.15 74.89 70.44 59.77 48.53	343.33 329.05 321.30 308.48 289.20 280.84 258.51 238.20	54.19 54.11 54.09 53.91 53.51 53.51 51.52 49.82						
VALVE Lift 0.000 0.010 0.020 0.040 0.055 0.100 0.150 0.200	Opens Deg BTDC 00 60.00 00 53.33 00 49.39 00 43.33 00 34.31 00 30.39 00 18.74 00 9.67 00 -1.24	Closes D Deg ABDC 103.33 95.71 91.90 85.15 74.89 70.44 59.77 48.53 38.76	343.33 329.05 321.30 308.48 289.20 280.84 258.51 238.20 217.52	54.19 54.11 54.09 53.91 53.51 53.51 51.52 49.82 47.61						
VALVE Lift 0.000 0.010 0.020 0.040 0.050 0.100 0.150 0.200 0.250	Opens Deg BTDC 00 60.00 00 53.33 00 49.39 00 43.33 00 34.31 00 30.39 00 18.74 00 9.67 00 -1.24 00 -10.76	Closes D Deg ABDC 103.33 95.71 91.90 85.15 74.89 70.44 59.77 48.53 38.76 29.22	343.33 329.05 321.30 308.48 289.20 280.84 258.51 238.20 217.52 198.45	54.19 54.11 54.09 53.91 53.51 53.51 51.52 49.82 47.61 44.90						
VALVE Lift 0.000 0.010 0.020 0.040 0.050 0.150 0.200 0.250 0.300	Opens Deg BTDC 00 60.00 00 53.33 00 49.39 00 43.33 00 34.31 00 30.39 00 18.74 00 9.67 00 -1.24 00 -10.76 00 -20.29	Closes D Deg ABDC 103.33 95.71 91.90 85.15 74.89 70.44 59.77 48.53 38.76 29.22 19.44	343.33 329.05 321.30 308.48 289.20 280.84 258.51 238.20 217.52 198.45 179.16	54.19 54.11 54.09 53.91 53.51 53.51 51.52 49.82 47.61 44.90 41.64						
VALVE Lift 0.000 0.010 0.020 0.040 0.050 0.100 0.150 0.200 0.250 0.300 0.350	Opens Deg BTDC 00 60.00 00 53.33 00 49.39 00 43.33 00 34.31 00 30.39 00 18.74 00 9.67 00 -1.24 00 -10.76 00 -20.29 00 -29.81	Closes D Deg ABDC 103.33 95.71 91.90 85.15 74.89 70.44 59.77 48.53 38.76 29.22 19.44 10.19	343.33 329.05 321.30 308.48 289.20 280.84 258.51 238.20 217.52 198.45 179.16 160.38	54.19 54.11 54.09 53.91 53.51 51.52 49.82 47.61 44.90 41.64 41.64						
VALVE Lift 0.000 0.010 0.020 0.040 0.150 0.150 0.200 0.250 0.300 0.350 0.400	Opens Deg BTDC 00 60.00 00 53.33 00 49.39 00 43.33 00 34.31 00 30.39 00 18.74 00 9.67 00 -1.24 00 -10.76 00 -20.29 00 -29.81 00 -40.57	Closes D Deg ABDC 103.33 95.71 91.90 85.15 74.89 70.44 59.77 48.53 38.76 29.22 19.44 10.19 -0.25	343.33 329.05 321.30 308.48 289.20 280.84 258.51 238.20 217.52 198.45 179.16 160.38 139.18	54.19 54.11 54.09 53.91 53.51 53.51 51.52 49.82 47.61 44.90 41.64 41.64 33.74						
VALVE Lift 0.000 0.010 0.020 0.040 0.150 0.150 0.200 0.250 0.300 0.350 0.400 0.451	Opens Deg BTDC 00 60.00 00 53.33 00 49.39 00 43.33 00 34.31 00 30.39 00 18.74 00 9.67 00 -1.24 00 -10.76 00 -20.29 00 -29.81 00 -40.57 00 -52.50	Closes D Deg ABDC 103.33 95.71 91.90 85.15 74.89 70.44 59.77 48.53 38.76 29.22 19.44 10.19 -0.25 -13.04	343.33 329.05 321.30 308.48 289.20 280.84 258.51 238.20 217.52 198.45 179.16 160.38 139.18	54.19 54.11 54.09 53.91 53.51 53.51 51.52 49.82 47.61 44.90 41.64 41.64 33.74 29.18						
VALVE Lift 0.000 0.010 0.020 0.040 0.150 0.250 0.350 0.350 0.450	Opens Deg BTDC 00 60.00 00 53.33 00 49.39 00 43.33 00 34.31 00 30.39 00 18.74 00 9.67 00 -1.24 00 -10.76 00 -20.29 00 -29.81 00 -40.57 00 -52.50 00 -69.58	Closes D Deg ABDC 103.33 95.71 91.90 85.15 74.89 70.44 59.77 48.53 38.76 29.22 19.44 10.19 -0.25 -13.04 -28.67	343.33 329.05 321.30 308.48 289.20 280.84 258.51 238.20 217.52 198.45 179.16 160.38 139.18 114.46 81.75	54.19 54.11 54.09 53.91 53.51 53.51 51.52 49.82 47.61 44.90 41.64 41.64 33.74 29.18 24.29						
VALVE Lift 0.000 0.010 0.020 0.040 0.150 0.200 0.250 0.350 0.400 0.450 0.550	Opens Deg BTDC 00 60.00 00 53.33 00 49.39 00 43.33 00 34.31 00 30.39 00 18.74 00 9.67 00 -1.24 00 -10.76 00 -20.29 00 -29.81 00 -40.57 00 -52.50 00 -69.58	Closes D Deg ABDC 103.33 95.71 91.90 85.15 74.89 70.44 59.77 48.53 38.76 29.22 19.44 10.19 -0.25 -13.04 -28.67	343.33 329.05 321.30 308.48 289.20 280.84 258.51 238.20 217.52 198.45 179.16 160.38 139.18	54.19 54.11 54.09 53.91 53.51 53.51 51.52 49.82 47.61 44.90 41.64 41.64 33.74 29.18						
VALVE Lift 0.000 0.010 0.020 0.040 0.150 0.200 0.250 0.300 0.350 0.400 0.450 0.550 CAM	Opens Deg BTDC 00 60.00 00 53.33 00 49.39 00 43.33 00 34.31 00 30.39 00 18.74 00 9.67 00 -1.24 00 -10.76 00 -20.29 00 -29.81 00 -40.57 00 -52.50 00 -69.58 00 -96.11	Closes D Deg ABDC 103.33 95.71 91.90 85.15 74.89 70.44 59.77 48.53 38.76 29.22 19.44 10.19 -0.25 -13.04 -28.67 -54.44	343.33 329.05 321.30 308.48 289.20 280.84 258.51 238.20 217.52 198.45 179.16 160.38 139.18 114.46 29.44	54.19 54.11 54.09 53.91 53.51 53.51 51.52 49.82 47.61 44.90 41.64 41.64 41.64 41.64 29.18 24.29 8.32						
VALVE Lift 0.000 0.010 0.020 0.040 0.150 0.200 0.250 0.300 0.355 0.400 0.450 0.550 0.550 CAM	Opens Deg BTDC 00 60.00 00 53.33 00 49.39 00 43.33 00 34.31 00 30.39 00 18.74 00 9.67 00 -1.24 00 -10.76 00 -20.29 00 -29.81 00 -40.57 00 -52.50 00 -69.58 00 -96.11 00 95.00	Closes D Deg ABDC 103.33 95.71 91.90 85.15 74.89 70.44 59.77 48.53 38.76 29.22 19.44 10.19 -0.25 -13.04 -28.67 54.44	343.33 329.05 321.30 308.48 289.20 280.84 258.51 238.20 217.52 198.45 179.16 160.38 139.18 114.46 29.44 418.33	54.19 54.11 54.09 53.91 53.51 51.52 49.82 47.61 44.90 41.64 41.64 33.74 29.18 24.29 8.32 39.34						
VALVE Lift 0.000 0.010 0.020 0.040 0.055 0.200 0.250 0.300 0.350 0.400 0.550 CAM 0.000 0.010	Opens Deg BTDC 00 60.00 00 53.33 00 49.39 00 43.33 00 34.31 00 30.39 00 18.74 00 9.67 00 -1.24 00 -10.76 00 -20.29 00 -29.81 00 -40.57 00 -52.50 00 -69.58 00 -96.11 00 95.00 00 80.00	Closes D Deg ABDC 103.33 95.71 91.90 85.15 74.89 70.44 59.77 48.53 38.76 29.22 19.44 10.19 -0.25 -13.04 -28.67 -54.44	343.33 329.05 321.30 308.48 280.84 280.84 258.51 238.20 217.52 198.45 179.16 160.38 139.18 114.46 81.75 29.44 418.33 385.00	54.19 54.11 54.09 53.91 53.51 51.52 49.82 47.61 44.90 41.64 41.64 33.74 29.18 24.29 8.32 39.34 39.20						
VALVE Lift 0.000 0.010 0.020 0.040 0.050 0.250 0.300 0.350 0.400 0.450 0.550 CAM 0.000 0.010	Opens Deg BTDC 00 60.00 00 53.33 00 49.39 00 43.33 00 34.31 00 30.39 00 18.74 00 9.67 00 -1.24 00 -10.76 00 -20.29 00 -29.81 00 -40.57 00 -52.50 00 -69.58 00 -96.11 00 95.00 00 80.00	Closes D Deg ABDC 103.33 95.71 91.90 85.15 74.89 70.44 59.77 48.53 38.76 29.22 19.44 10.19 -0.25 -13.04 -28.67 -54.44 143.33 125.00 95.71	343.33 329.05 321.30 308.48 280.84 280.84 258.51 238.20 217.52 198.45 179.16 160.38 139.18 114.46 81.75 29.44 418.33 385.00 329.05	54.19 54.11 54.09 53.91 53.51 51.52 49.82 47.61 44.90 41.64 41.64 33.74 29.18 24.29 8.32 39.34 39.20 38.72						
VALVE Lift 0.000 0.010 0.020 0.040 0.055 0.200 0.250 0.300 0.350 0.400 0.550 CAM 0.000 0.010	Opens Deg BTDC 00 60.00 00 53.33 00 49.39 00 43.33 00 34.31 00 30.39 00 18.74 00 9.67 00 -1.24 00 -10.76 00 -29.81 00 -40.57 00 -52.50 00 -69.58 00 -96.11 00 95.00 00 80.00 00 53.33 00 35.88	Closes D Deg ABDC 103.33 95.71 91.90 85.15 74.89 70.44 59.77 48.53 38.76 29.22 19.44 10.19 -0.25 -13.04 -28.67 -54.44 143.33 125.00 95.71	343.33 329.05 321.30 308.48 280.84 280.84 258.51 238.20 217.52 198.45 179.16 160.38 139.18 114.46 81.75 29.44 418.33 385.00	54.19 54.11 54.09 53.91 53.51 51.52 49.82 47.61 44.90 41.64 41.64 33.74 29.18 24.29 8.32 39.34 39.20						
VALVE Lift 0.000 0.010 0.020 0.040 0.050 0.250 0.300 0.350 0.400 0.450 0.550 CAM 0.000 0.010	Opens Deg BTDC 00 60.00 00 53.33 00 49.39 00 43.33 00 34.31 00 30.39 00 18.74 00 9.67 00 -1.24 00 -10.76 00 -29.81 00 -29.81 00 -40.57 00 -52.50 00 -69.58 00 -96.11 00 95.00 00 80.00 00 53.33 00 35.88	Closes D Deg ABDC 103.33 95.71 91.90 85.15 74.89 70.44 59.77 48.53 38.76 29.22 19.44 10.19 -0.25 -13.04 -28.67 -54.44 143.33 125.00 95.71 76.67	343.33 329.05 321.30 308.48 280.84 280.84 258.51 238.20 217.52 198.45 179.16 160.38 139.18 114.46 81.75 29.44 418.33 385.00 329.05	54.19 54.11 54.09 53.91 53.51 51.52 49.82 47.61 44.90 41.64 41.64 33.74 29.18 24.29 8.32 39.34 39.20 38.72						
VALVE Lift 0.000 0.010 0.022 0.044 0.055 0.100 0.155 0.200 0.350 0.300 0.355 0.400 0.555 CAM 0.006 0.010 0.022 0.000 0.555 CAM	Opens Deg BTDC 00 60.00 00 53.33 00 49.39 00 43.33 00 34.31 00 30.39 00 18.74 00 9.67 00 -1.24 00 -10.76 00 -29.81 00 -40.57 00 -52.50 00 -69.58 00 -96.11 00 95.00 00 80.00 00 53.33 00 35.88 00 30.00	Closes D Deg ABDC 103.33 95.71 91.90 85.15 74.89 70.44 59.77 48.53 38.76 29.22 19.44 10.19 -0.25 -13.04 -28.67 -54.44 143.33 125.00 95.71 76.67 70.00	343.33 329.05 321.30 308.48 280.84 258.51 238.20 217.52 198.45 179.16 160.38 139.18 114.46 29.44 418.33 385.00 329.05 292.55	54.19 54.11 54.09 53.91 53.51 51.52 49.82 47.61 44.90 41.64 41.64 33.74 29.18 24.29 8.32 39.34 39.20 38.72 37.99						
VALVE Lift 0.000 0.010 0.022 0.042 0.050 0.100 0.155 0.200 0.355 0.300 0.355 0.400 0.555 CAM 0.006 0.010 0.022 0.000 0.010 0.025 0.300 0.355 0.200 0.555 0.500 0.555 0.555 0.555 0.000 0.555 0.555 0.000 0.555 0.555 0.000 0.555 0.000 0.555 0.000 0.555 0.0000 0.000000 0.00000 0.0000 0.00000000	Opens Deg BTDC 00 60.00 00 53.33 00 49.39 00 43.33 00 34.31 00 30.39 00 18.74 00 9.67 00 -1.24 00 -10.76 00 -20.29 00 -29.81 00 -40.57 00 -52.50 00 -69.58 00 -96.11 00 95.00 00 80.00 00 53.33 00 35.88 00 30.00 00 14.05	Closes D Deg ABDC 103.33 95.71 91.90 85.15 74.89 70.44 59.77 48.53 38.76 29.22 19.44 10.19 -0.25 -13.04 -28.67 -54.44 143.33 125.00 95.71 76.67 70.00 53.79	343.33 329.05 321.30 308.48 289.20 280.84 258.51 238.20 217.52 198.45 179.16 160.38 139.18 14.46 81.75 29.44 418.33 385.00 329.05 292.55 280.00	54.19 54.11 54.09 53.91 53.51 51.52 49.82 47.61 44.90 41.64 41.64 33.74 29.18 24.29 8.32 39.34 39.20 38.72 37.99 37.99						
VALVE Lift 0.000 0.010 0.020 0.040 0.150 0.200 0.150 0.200 0.350 0.350 0.400 0.550 CAM 0.006 0.010 0.020 0.350 0.550 0.550 0.550 0.001 0.020 0.050 0.550 0.001 0.050 0.050 0.001 0.050 0.050 0.050 0.000 0.050 0.0000 0.00000 0.0000 0.0000 0.00000 0.00000 0.0000 0.0000 0.0000000 0.00000 0.00000	Opens Deg BTDC 00 60.00 00 53.33 00 49.39 00 43.33 00 34.31 00 30.39 00 18.74 00 9.67 00 -1.24 00 -10.76 00 -20.29 00 -29.81 00 -40.57 00 -52.50 00 -69.58 00 -96.11 00 95.00 00 80.00 00 53.33 00 35.88 00 30.00	Closes D Deg ABDC 103.33 95.71 91.90 85.15 74.89 70.44 59.77 48.53 38.76 29.22 19.44 10.19 -0.25 -13.04 -28.67 -54.44 143.33 125.00 95.71 76.67 70.00 53.79 38.57	343.33 329.05 321.30 321.30 321.30 321.30 321.30 321.30 321.30 328.20 217.52 198.45 179.16 160.38 139.18 114.46 81.75 29.44 418.33 329.05 292.55 280.00 247.85	54.19 54.11 54.09 53.91 53.51 53.51 51.52 49.82 47.61 44.90 41.64 41.64 33.74 29.18 24.29 8.32 39.34 39.34 39.20 38.72 37.99 37.99 36.35						
VALVE Lift 0.000 0.010 0.020 0.150 0.200 0.150 0.200 0.350 0.350 0.400 0.450 0.550 CAM 0.000 0.010 0.010 0.020 0.350 0.300 0.550 0.550 0.010 0.010 0.010 0.010 0.050 0.010 0.010 0.150 0.500 0.150 0.550 0.100 0.150 0.550 0.100 0.150 0.550 0.100 0.150 0.550 0.100 0.150 0.550 0.100 0.150 0.550 0.100 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.550 0.000 0.150 0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Opens Deg BTDC 00 60.00 00 53.33 00 49.39 00 43.33 00 34.31 00 30.39 00 18.74 00 9.67 00 -1.24 00 -10.76 00 -20.29 00 -29.81 00 -40.57 00 -52.50 00 -69.58 00 -96.11 00 95.00 00 80.00 00 53.33 00 35.88 00 30.00 00 14.05 00 -1.43 00 -15.71	Closes D Deg ABDC 103.33 95.71 91.90 85.15 74.89 70.44 59.77 48.53 38.76 29.22 19.44 10.19 -0.25 -13.04 -28.67 -54.44 143.33 125.00 95.71 76.67 70.00 53.79 38.57 24.12	343.33 329.05 321.30 321.30 321.30 321.30 321.30 321.30 321.30 329.05 289.20 289.20 280.84 285.51 286.20 217.52 198.45 179.16 160.38 139.18 114.46 81.75 29.44 418.33 329.05 292.55 280.00 247.85 217.14	54.19 54.11 54.09 53.91 53.51 53.51 51.52 49.82 47.61 44.90 41.64 41.64 41.64 41.64 41.64 41.64 33.74 29.18 24.29 8.32 39.34 39.20 38.72 37.99 36.35 33.42						
VALVE Lift 0.000 0.010 0.020 0.040 0.150 0.200 0.250 0.350 0.400 0.455 CAM 0.006 0.010 0.550 0.550 0.010 0.020 0.155 0.006 0.010 0.020 0.155 0.006 0.010 0.055 0.100 0.155 0.100 0.155 0.100 0.155 0.100 0.155 0.100 0.155 0.100 0.155 0.100 0.155 0.100 0.155 0.200 0.155 0.555 CAM	Opens Deg BTDC 00 60.00 00 53.33 00 49.39 00 43.33 00 34.31 00 30.39 00 18.74 00 9.67 00 -1.24 00 -0.76 00 -20.29 00 -29.81 00 -40.57 00 -52.50 00 -69.58 00 -96.11 00 95.00 00 80.00 00 53.33 00 35.88 00 30.00 00 14.05 00 -1.43 00 -15.71 00 -30.00	Closes D Deg ABDC 103.33 95.71 91.90 85.15 74.89 70.44 59.77 48.53 38.76 29.22 19.44 10.19 -0.25 -13.04 -28.67 -54.44 143.33 125.00 95.71 76.67 70.00 53.79 38.57 24.12 10.00	343.33 329.05 321.30 321.30 321.30 321.30 321.30 321.30 321.30 328.20 280.84 258.51 238.20 217.52 198.45 179.16 160.38 139.18 14.46 81.75 29.44 418.33 385.00 329.05 292.55 280.00 247.85 217.14 188.40 160.00	54.19 54.11 54.09 53.91 53.51 53.51 51.52 49.82 47.61 44.90 41.64 41.64 33.74 29.18 24.29 8.32 39.34 39.20 38.72 37.99 37.99 37.99 36.35 33.42 31.45						
VALVE Lift 0.000 0.000 0.010 0.020 0.045 0.100 0.150 0.250 0.300 0.455 CAM 0.006 0.010 0.550 CAM	Opens Deg BTDC 00 60.00 00 53.33 00 49.39 00 43.33 00 34.31 00 30.39 00 18.74 00 9.67 00 -1.24 00 -10.76 00 -20.29 00 -29.81 00 -40.57 00 -52.50 00 -69.58 00 -96.11 00 95.00 00 80.00 00 80.00 00 53.33 00 35.88 00 30.00 00 14.05 00 -1.43 00 -15.71 00 -30.00 00 -46.55	Closes D Deg ABDC 103.33 95.71 91.90 85.15 74.89 70.44 59.77 48.53 38.76 29.22 19.44 10.19 -0.25 -13.04 -28.67 -54.44 143.33 125.00 95.71 76.67 70.00 53.79 38.57 24.12 10.00	343.33 329.05 321.30 308.48 289.20 280.84 258.51 238.20 217.52 198.45 179.16 160.38 139.18 114.46 81.75 29.44 418.33 385.00 292.55 280.00 247.85 217.14 188.40	54.19 54.11 54.09 53.91 53.51 51.52 49.82 47.61 44.90 41.64 41.64 41.64 33.74 29.18 24.29 8.32 39.34 39.20 38.72 37.99 36.35 33.42 31.45 29.12						

Major Intensity 49.05 Minor Intensity 105.00

	і м т	АК	Е									
Rocker	Arm Rat	io = 1.6	00	Valve	Lash = 0	.0256	Va	alve Ang	le = 23	.0		
Cam	Valve	Crank	Time	Time	Valve	Valve	Valve	Valve	Piston	Cylinder	User	L/D
Lift	Lift	Angle	Port	Port	Velocity	Acceler	Lift	Lift	Travel	Volume	Supplied Valve	Ratio
			Area	Area	FPS	ation	Vert	Horiz		CC	Air Discharg	re
			cm^2	cm^2/cc		FPS ²					Flow Coeffici	.ent
0.0000	-0.0256	-120.0			0.0000	0.0000						
0.0020	-0.0224	-110.0			1.0400	4.0560						
0.0050	-0.0176	-100.0			1.5600	2.0280						
0.0070	-0.0144	-90.0			1.0400	-2.0280						
0.0100	-0.0096	-80.0			1.5600	2.0280						
0.0130	-0.0048	-70.0			1.5600	0.0000						
0.0160	0.0000	-60.0	0.0000	0.0000	1.5600	0.0000	0.0000	0.0000	0.9890	203.652	.00-1.#IND	0.0000
0.0220	0.0096	-50.0	0.1008	0.0002	3.1200	6.0840	0.0088	0.0038	0.7181	147.867	8.16 0.9177	0.0048

0.0330	0.0272 -	40.0 0.28	355 0.0004	5.7200	10.1400	0.0250	0.0106	0.4767	98.165	23.12 0.9177 0.0135
0.0500		30.0 0.5		8.8400	12.1680			0.2759	56.818	46.24 0.9177 0.0269
									25.774	
0.0780					22.3080			0.1252		84.32 0.9177 0.0491
0.1150		10.0 1.60		19.2400	18.2520			0.0317	6.523	132.30 0.9018 0.0784
0.1450	0.2064 TD	C 2.16	568 0.0032	15.6000	-14.1960	0.1900	0.0806	0.0000	.000	170.03 0.8894 0.1022
0.1800	0.2624	10.0 2.75	547 0.0041	18.2000	10.1400	0.2415	0.1025	0.0317	6.523	205.31 0.8447 0.1299
0.2150	0.3184	20.0 3.34	25 0.0050	18.2000	0.0000	0.2931	0.1244	0.1252	25.774	240.96 0.8170 0.1576
0.2500		30.0 3.93		18.2000		0.3446		0.2759	56.818	277.36 0.7998 0.1853
0.2810		40.0 4.49		16.1200	-8.1120			0.4767	98.165	307.44 0.7828 0.2099
0.3100	0.4704	50.0 4.93	382 0.0074	15.0800	-4.0560	0.4330	0.1838	0.7181	147.867	333.42 0.7652 0.2329
0.3340	0.5088	60.0 5.34	14 0.0080	12.4800	-10.1400	0.4684	0.1988	0.9890	203.652	358.80 0.7613 0.2519
0.3500		70.0 5.61			-16.2240			1.2776	263.083	384.40 0.7766 0.2646
0.3670		80.0 5.89		8.8400			0.2194	1.5721	323.732	405.80 0.7801 0.2780
0.3790	0.5808	90.0 6.09	972 0.0091	6.2400	-10.1400	0.5346	0.2269	1.8615	383.340	415.40 0.7722 0.2875
0.3850	0.5904 1	00.0 6.19	0.0093	3.1200	-12.1680	0.5435	0.2307	2.1364	439.948	420.20 0.7684 0.2923
0.3880		10.0 6.24	84 0.0093	1,5600	-6.0840	0.5479	0.2326	2.3891	491.983	422.60 0.7665 0.2947
0.3860		20.0 6.21			-10.1400			2.6140	538.281	421.00 0.7678 0.2931
0.3800		30.0 6.11		-3.1200				2.8071	578.059	416.20 0.7715 0.2883
0.3690	0.5648 14	40.0 5.92	292 0.0089	-5.7200	-10.1400	0.5199	0.2207	2.9663	610.847	407.40 0.7788 0.2796
0.3520	0.5376 1	50.0 5.64	37 0.0084	-8.8400	-12.1680	0.4949	0.2101	3.0905	636.413	387.60 0.7784 0.2661
0.3320		60.0 5.30		-10.4000				3.1792	654.672	355.60 0.7593 0.2503
0.3090		70.0 4.92		-11.9600				3.2323	665.615	332.53 0.7658 0.2321
0.2820	0.4256 BD	C 4.46	579 0.0067	-14.0400	-8.1120	0.3918	0.1663	3.2500	669.259	308.34 0.7822 0.2107
0.2500	0.3744 1	90.0 3.93	304 0.0059	-16.6400	-10.1400	0.3446	0.1463	3.2323	665.615	277.36 0.7998 0.1853
0.2140	0.3168 20	00.0 3.32	257 0.0050	-18.7200	-8.1120	0.2916	0.1238	3.1792	654.672	239.92 0.8176 0.1568
		10.0 2.75		-17.6800		0.2415		3.0905	636.413	205.31 0.8447 0.1299
0.1800										
0.1450	0.2064 2	20.0 2.10		-18.2000	-2.0280	0.1900	0.0806	2.9663	610.847	170.03 0.8894 0.1022
0.1110	0.1520 2	30.0 1.59	0.0024	-17.6800	2.0280	0.1399	0.0594	2.8071	578.059	127.12 0.9029 0.0752
0.0820	0.1056 24	40.0 1.10	86 0.0017	-15.0800	10.1400	0.0972	0.0413	2.6140	538.281	89.54 0.9154 0.0523
0.0500		50.0 0.5		-16.6400	-6.0840			2.3891	491.983	46.24 0.9177 0.0269
0.0350		60.0 0.31			34.4760			2.1364	439.948	25.84 0.9177 0.0150
0.0240	0.0128 2	70.0 0.13	344 0.0002	-5.7200	8.1120	0.0118	0.0050	1.8615	383.340	10.88 0.9177 0.0063
0.0170	0.0016 2	80.0 0.01	68 0.0000	-3.6400	8.1120	0.0015	0.0006	1.5721	323.732	1.36 0.9177 0.0008
		90.0		-1.5600	8.1120					
		00.0		-1.5600	0.0000					
0.0090	-0.0112 3	10.0		-1.0400	2.0280					
0.0070	-0.0144 32	20.0		-1.0400	0.0000					
0.0040	-0.0192 3	30.0		-1.5600	-2.0280					
					0.0000					
		40.0		-1.5600						
0.0000	-0.0256 3	50.0		-0.5200	4.0560					
0.0000	-0.0256 TD	C		0.0000	2.0280					
	-0.0256 TD		582 0.1721							84787
0.0000 Totals	-0.0256 TD		582 0.1721					Theor	otical C	84787
Totals		115.19		0.0000	2.0280				-	cle VE = 1.53308
Totals		115.19		0.0000	2.0280	146 (O	nly good		-	
Totals Max		115.19 Sq In Are	a = Valve I	0.0000 Duration @	2.0280	146 (O	nly good		-	cle VE = 1.53308
Totals Max Max	x Total CFM x Total CFM	115.19 Sq In Are Sq In Are	ea = Valve I ea = 50126.0	0.0000 Duration @	2.0280	146 (O	nly good		-	cle VE = 1.53308
Totals Max Max Tot	x Total CFM x Total CFM tal CFM Sq :	115.19 Sq In Are Sq In Are In Throat	ea = Valve I ea = 50126.0 Area = 3193	0.0000 Ouration @ 57 34.69	2.0280 9 0.000 *			if head	-	cle VE = 1.53308
Totals Max Tot Tot	x Total CFM x Total CFM tal CFM Sq 1 tal CFM Sq 1	115.19 Sq In Are Sq In Are In Throat In Net Val	ea = Valve I ea = 50126.0 Area = 3193 ve Area (Va	0.0000 Ouration (57 34.69 alve Area	2.0280 9 0.000 *			if head	-	cle VE = 1.53308
Totals Max Tot Tot	x Total CFM x Total CFM tal CFM Sq :	115.19 Sq In Are Sq In Are In Throat In Net Val	ea = Valve I ea = 50126.0 Area = 3193 ve Area (Va	0.0000 Ouration (57 34.69 alve Area	2.0280 9 0.000 *			if head	-	cle VE = 1.53308
Totals Max Tot Tot	x Total CFM x Total CFM tal CFM Sq 1 tal CFM Sq 1	115.19 Sq In Are Sq In Are In Throat In Net Val	ea = Valve I ea = 50126.0 Area = 3193 ve Area (Va	0.0000 Ouration (57 34.69 alve Area	2.0280 9 0.000 *			if head	-	cle VE = 1.53308
Totals Max Tot Tot Tot	x Total CFM x Total CFM tal CFM Sq : tal CFM Sq : tal CFM Sq :	115.1 Sq In Are Sq In Are In Throat In Net Val In Valve 2	ea = Valve I ea = 50126.0 Area = 319 ve Area (Va Area = 2556)	0.0000 Ouration (57 34.69 alve Area	2.0280 9 0.000 *			if head	-	cle VE = 1.53308
Totals Max Tot Tot Tot Intake	x Total CFM x Total CFM tal CFM Sq : tal CFM Sq : tal CFM Sq : BTDC (IVO)	115.1 Sq In Are Sq In Are In Throat In Net Val In Valve 2 to TDC) =	ea = Valve I ea = 50126.0 Area = 3193 Lve Area (Va Area = 25563 5.828	0.0000 Ouration (57 34.69 alve Area	2.0280 9 0.000 *			if head	-	cle VE = 1.53308
Totals Max Tot Tot Tot Intake Intake	x Total CFM x Total CFM tal CFM Sq : tal CFM Sq : tal CFM Sq : BTDC (IVO f Pumping (T)	115.1 Sq In Are Sq In Are In Throat In Net Val In Valve A to TDC) = DC to BDC	ea = Valve I ea = 50126. Area = 319: Lve Area (Va Area = 2556: 5.828 9 = 95.573	0.0000 Ouration (57 34.69 alve Area	2.0280 9 0.000 *			if head	-	cle VE = 1.53308
Totals Max Tot Tot Intake Intake Intake	x Total CFM x Total CFM tal CFM Sq : tal CFM Sq : tal CFM Sq : BTDC (IVO f Pumping (T) Ramming (B)	115.1 Sq In Are Sq In Are In Throat In Net Val In Valve A to TDC) = DC to BDC DC to IVC	ea = Valve I ea = 50126.4 Area = 319 Ve Area (Va Area = 2556 5.828) = 95.573) = 20.391	0.0000 Ouration (57 34.69 alve Area	2.0280 9 0.000 *			if head	-	cle VE = 1.53308
Totals Max Tot Tot Intake Intake Intake	x Total CFM x Total CFM tal CFM Sq : tal CFM Sq : tal CFM Sq : BTDC (IVO f Pumping (T)	115.1 Sq In Are Sq In Are In Throat In Net Val In Valve A to TDC) = DC to BDC DC to IVC	ea = Valve I ea = 50126.4 Area = 319 Ve Area (Va Area = 2556 5.828) = 95.573) = 20.391	0.0000 Ouration (57 34.69 alve Area	2.0280 9 0.000 *			if head	-	cle VE = 1.53308
Totals Max Tot Tot Intake Intake Intake	x Total CFM x Total CFM tal CFM Sq : tal CFM Sq : tal CFM Sq : BTDC (IVO f Pumping (T) Ramming (B)	115.1 Sq In Are Sq In Are In Throat In Net Val In Valve A to TDC) = DC to BDC DC to IVC	ea = Valve I ea = 50126.4 Area = 319 Ve Area (Va Area = 2556 5.828) = 95.573) = 20.391	0.0000 Ouration (57 34.69 alve Area	2.0280 9 0.000 *			if head	-	cle VE = 1.53308
Totals Ma: Tot Tot Intake Intake Intake Intake	x Total CFM x Total CFM tal CFM Sq : tal CFM Sq : tal CFM Sq : BTDC (IVO f Pumping (T) Ramming (B) Overlap (I)	115.1 Sq In Are Sq In Are In Throat In Valve 7 to TDC) = DC to BDC DC to IVC VO to EVC	ea = Valve I ea = 50126.(Area = 319) ve Area (Va area = 2556) 5.828 9 = 95.573 9 = 20.391 9 = 25.245	0.0000 Ouration (57 34.69 alve Area 3.21	2.0280 9 0.000 *			if head	-	cle VE = 1.53308
Totals Max Tot Tot Intake Intake Intake	x Total CFM x Total CFM tal CFM Sq : tal CFM Sq : tal CFM Sq : BTDC (IVO f Pumping (T) Ramming (B) Overlap (I) Lift	115.1 Sq In Are Sq In Are In Throat In Valve 7 to TDC) = DC to BDC DC to IVC VO to EVC Opens	ea = Valve I ea = 50126.(Area = 3192 ve Area (V area = 25563 5.828) = 95.573) = 20.391) = 25.245 Closes Do	0.0000 Ouration (57 34.69 alve Area	2.0280 9 0.000 * - Valve			if head	-	cle VE = 1.53308
Totals Ma: Tot Tot Intake Intake Intake Intake	x Total CFM x Total CFM tal CFM Sq : tal CFM Sq : tal CFM Sq : BTDC (IVO 4 Pumping (T) Ramming (B) Overlap (T) Lift	115.1 Sq In Are Sq In Are In Throat In Net Val In Valve A to TDC) = DC to BDC DC to BDC VO to EVC Opens Deg BTDC	a = Valve I $a = 50126.0$ Area = 3192 ve Area (Ve area = 25562 5.828 = 95.573 = 20.391 = 25.245 Closes Do Deg ABDC	0.0000 Ouration (57 34.69 alve Area 3.21	2.0280 9 0.000 * - Valve ; Area			if head	-	cle VE = 1.53308
Totals Ma: Tot Tot Intake Intake Intake Intake	x Total CFM x Total CFM tal CFM Sq : tal CFM Sq : tal CFM Sq : BTDC (IVO f Pumping (T) Ramming (B) Overlap (T) Lift	115.1 Sq In Are Sq In Are In Throat In Net Val In Valve 2 to TDC) = DC to BDC DC to IVC VO to EVC Opens Deg BTDC 60.00	a = Valve I $a = 50126.0$ Area = 3192 .ve Area (Ve area = 25562 5.828 = 95.573 = 20.391 = 25.245 Closes Do Deg ABDC 103.33	0.0000 Ouration (57 34.69 alve Area 3.21 uration 343.33	2.0280 0.000 * - Valve : Area 57.80			if head	-	cle VE = 1.53308
Totals Ma: Tot Tot Intake Intake Intake Intake	x Total CFM x Total CFM tal CFM Sq : tal CFM Sq : tal CFM Sq : BTDC (IVO 4 Pumping (T) Ramming (B) Overlap (T) Lift	115.1 Sq In Are Sq In Are In Throat In Net Val In Valve A to TDC) = DC to BDC DC to BDC VO to EVC Opens Deg BTDC	a = Valve I $a = 50126.0$ Area = 3192 .ve Area (Ve area = 25562 5.828 = 95.573 = 20.391 = 25.245 Closes Do Deg ABDC 103.33	0.0000 Ouration (57 34.69 alve Area 3.21	2.0280 9 0.000 * - Valve ; Area			if head	-	cle VE = 1.53308
Totals Ma: Tot Tot Intake Intake Intake Intake	x Total CFM x Total CFM Sq : tal CFM Sq : tal CFM Sq : BTDC (IVO f Pumping (T) Ramming (B) Overlap (T) Lift 0.00000 0.00600	115.1 Sq In Are Sq In Are In Throat In Net Val In Valve A to TDC) = DC to BDC DC to IVC VO to EVC Opens Deg BTDC 60.00 53.75	ea = Valve I ea = 50126.0 Area = 3193 .ve Area (Va area = 25563 5.828 9 = 95.573 9 = 20.391 9 = 25.245 Closes Du Deg ABDC 103.33	0.0000 Ouration (57 34.69 alve Area 3.21 uration 343.33 329.82	2.0280 0.000 * - Valve : Area 57.80 57.72			if head	-	cle VE = 1.53308
Totals Ma: Tot Tot Intake Intake Intake Intake	x Total CFM x Total CFM tal CFM Sq : tal CFM Sq : tal CFM Sq : BTDC (IVO f Pumping (T) Ramming (B) Overlap (T) Lift 0.00000 0.00600 0.01000	115.1 Sq In Are Sq In Are In Throat In Valve 2 to TDC) = DC to BDC DC to IVC VO to EVC Opens Deg BTDC 60.00 53.75 49.77	ea = Valve I ea = 50126. Area = 3193 Ve Area (Va area = 25563 5.828 9 = 95.573 9 = 20.391 9 = 25.245 Closes Du Deg ABDC 103.33 1 96.07 1 92.50 1	0.0000 Ouration (57 34.69 alve Area 3.21 uration 343.33 329.82 322.27	2.0280 0.000 * - Valve : Area 57.80 57.72 57.70			if head	-	cle VE = 1.53308
Totals Ma: Tot Tot Intake Intake Intake Intake	x Total CFM x Total CFM tal CFM Sq : tal CFM Sq : tal CFM Sq : BTDC (IVO f Pumping (T) Ramming (B) Overlap (T) Lift 0.00000 0.00600 0.01000 0.02000	115.1 Sq In Are Sq In Are In Throat In Net Val In Valve A to TDC) = DC to BDC DC to IVC VO to EVC Opens Deg BTDC 60.00 53.75 49.77 44.09	ea = Valve I ea = 50126. Area = 319 Ve Area (Va area = 2556 5.828) = 95.573) = 20.391) = 25.245 Closes Du Deg ABDC 103.33 1 96.07 1 92.50 1	0.0000 Ouration (57 34.69 alve Area 3.21 uration 343.33 329.82 322.27 310.00	2.0280 0.000 * - Valve = 57.80 57.72 57.70 57.50			if head	-	cle VE = 1.53308
Totals Ma: Tot Tot Intake Intake Intake Intake	x Total CFM x Total CFM tal CFM Sq : tal CFM Sq : BTDC (IVO f Pumping (T) Ramming (B) Overlap (T) Lift 0.00000 0.00600 0.01000 0.02000 0.04000	115.1 Sq In Are Sq In Are In Throat In Net Val In Valve A to TDC) = DC to BDC DC to IVC VO to EVC Opens Deg BTDC 60.00 53.75 49.77 44.09 35.29	ea = Valve I ea = 50126.(Area = 319) ve Area (Va area = 2556) 5.828) = 95.573) = 20.391 0 = 25.245 Closes Du Deg ABDC 103.33 1 96.07 1 92.50 1 85.91 1 76.00 1	0.0000 Duration (57 34.69 alve Area 3.21 uration 343.33 329.82 322.27 310.00 291.29	2.0280 9 0.000 * - Valve = 57.80 57.72 57.70 57.50 57.08			if head	-	cle VE = 1.53308
Totals Ma: Tot Tot Intake Intake Intake Intake	x Total CFM x Total CFM tal CFM Sq : tal CFM Sq : tal CFM Sq : BTDC (IVO f Pumping (T) Ramming (B) Overlap (T) Lift 0.00000 0.00600 0.01000 0.02000	115.1 Sq In Are Sq In Are In Throat In Net Val In Valve A to TDC) = DC to BDC DC to IVC VO to EVC Opens Deg BTDC 60.00 53.75 49.77 44.09	ea = Valve I ea = 50126.(Area = 319) ve Area (Va area = 2556) 5.828) = 95.573) = 20.391 0 = 25.245 Closes Du Deg ABDC 103.33 1 96.07 1 92.50 1 85.91 1 76.00 1	0.0000 Ouration (57 34.69 alve Area 3.21 uration 343.33 329.82 322.27 310.00	2.0280 0.000 * - Valve = 57.80 57.72 57.70 57.50			if head	-	cle VE = 1.53308
Totals Ma: Tot Tot Intake Intake Intake Intake	x Total CFM x Total CFM tal CFM Sq : tal CFM Sq : BTDC (IVO f Pumping (T) Ramming (B) Overlap (T) Lift 0.00000 0.00600 0.01000 0.02000 0.04000	115.1 Sq In Are Sq In Are In Throat In Net Val In Valve A to TDC) = DC to BDC DC to IVC VO to EVC Opens Deg BTDC 60.00 53.75 49.77 44.09 35.29	ea = Valve I ea = 50126.(Area = 319) ve Area (Va area = 2556) 5.828 9 = 95.573 9 = 20.391 9 = 25.245 Closes Dr Deg ABDC 103.33 1 92.50 1 85.91 1 76.00 2 71.83 1	0.0000 Duration (57 34.69 alve Area 3.21 uration 343.33 329.82 322.27 310.00 291.29	2.0280 9 0.000 * - Valve = 57.80 57.72 57.70 57.50 57.08			if head	-	cle VE = 1.53308
Totals Ma: Tot Tot Intake Intake Intake Intake	x Total CFM x Total CFM tal CFM Sq : tal CFM Sq : tal CFM Sq : BTDC (IVO f Pumping (T) Ramming (B) Overlap (T) Lift 1 0.00000 0.00600 0.01000 0.02000 0.04000 0.05000 0.10000	115.15 Sq In Are Sq In Are In Throat In Net Val In Valve 7 to TDC) = DC to BDC DC to IVC VO to EVC Opens Deg BTDC 60.00 53.75 49.77 44.09 35.29 31.62 19.86	ea = Valve I ea = 50126.(Area = 319) ve Area (Va rea = 2556) 5.828 9 = 95.573 9 = 20.391 9 = 25.245 Closes De Deg ABDC 103.33 1 92.50 1 85.91 1 76.00 1 71.83 2 61.09 1	0.0000 Ouration (57 34.69 alve Area 3.21 uration 343.33 329.82 329.82 322.27 310.00 291.29 283.45 260.96	2.0280 0.000 * - Valve = 57.80 57.72 57.70 57.50 57.08 57.08 57.08 55.83			if head	-	cle VE = 1.53308
Totals Ma: Tot Tot Intake Intake Intake Intake	x Total CFM x Total CFM tal CFM Sq : tal CFM Sq : tal CFM Sq : BTDC (IVO f Pumping (T) Ramming (B) Overlap (T) Lift 0.00000 0.00600 0.00600 0.01000 0.02000 0.04000 0.05000 0.10000 0.15000	115.19 Sq In Are Sq In Are In Throat In Net Val In Valve 7 to TDC) = DC to BDC DC to IVC VO to EVC Opens Deg BTDC 60.00 53.75 49.77 44.09 35.29 31.62 19.86 11.42	ea = Valve I ea = 50126.(Area = 319) ve Area (Va area = 2556) 5.828 9 = 95.573 9 = 20.391 9 = 25.245 Closes Do Deg ABDC 103.33 1 96.07 1 92.50 1 85.91 1 76.00 1 71.83 1 61.09 1 50.43 1	0.0000 Duration (57 34.69 alve Area 3.21 uration 343.33 329.82 322.27 310.00 291.29 283.45 260.96 241.85	2.0280 • 0.000 * - Valve = 57.80 57.72 57.70 57.50 57.08 57.08 55.83 54.96			if head	-	cle VE = 1.53308
Totals Ma: Tot Tot Intake Intake Intake Intake	x Total CFM x Total CFM tal CFM Sq : tal CFM Sq : tal CFM Sq : BTDC (IVO f Pumping (T) Ramming (B) Overlap (T) Lift 0.00000 0.00600 0.01000 0.02000 0.04000 0.05000 0.15000 0.20000	115.15 Sq In Are Sq In Are In Throat In Net Val In Valve 2 to TDC) = DC to BDC DC to IVC VO to EVC Opens Deg BTDC 60.00 53.75 49.77 44.09 35.29 31.62 19.86 11.42 1.33	ea = Valve I ea = 50126.(Area = 3192 ve Area (V area = 25563 5.828 9 = 95.573 9 = 20.391 9 = 25.245 Closes Do Deg ABDC 103.33 2 96.07 2 92.50 2 76.00 2 71.83 2 61.09 2 50.43 2 41.18 2	0.0000 Duration (57 34.69 alve Area 3.21 uration 343.33 329.82 322.27 310.00 291.29 283.45 260.96 241.85 222.51	2.0280 • 0.000 * - Valve = 57.80 57.72 57.70 57.50 57.08 57.08 55.83 54.96 53.14			if head	-	cle VE = 1.53308
Totals Ma: Tot Tot Intake Intake Intake Intake	x Total CFM x Total CFM tal CFM Sq : tal CFM Sq : tal CFM Sq : BTDC (IVO f Pumping (T) Ramming (B) Overlap (T) Lift 0.00000 0.00600 0.01000 0.02000 0.04000 0.05000 0.15000 0.25000	115.19 Sq In Are Sq In Are In Throat In Net Val In Valve 2 to TDC) = DC to BDC DC to IVC VO to EVC Opens Deg BTDC 60.00 53.75 49.77 44.09 35.29 31.62 19.86 11.42 1.33 -7.79	ea = Valve I a = 50126. Area = 3193 Ve Area (Va Area = 25563 5.828 0 = 95.573 0 = 20.391 0 = 25.245 Closes Du Deg ABDC 103.33 3 96.07 3 92.50 3 85.91 3 76.00 3 71.83 3 61.09 3 50.43 3 41.18 3 32.21 3	0.0000 Duration (57 34.69 alve Area 3.21 uration 343.33 329.82 322.27 310.00 291.29 283.45 283.45 260.96 241.85 222.51 204.43	2.0280 • 0.000 * - Valve = 57.80 57.72 57.70 57.50 57.08 55.83 54.96 53.14 50.78			if head	-	cle VE = 1.53308
Totals Ma: Tot Tot Intake Intake Intake Intake	x Total CFM x Total CFM tal CFM Sq : tal CFM Sq : tal CFM Sq : BTDC (IVO f Pumping (T) Ramming (B) Overlap (T) Lift 0.00000 0.00600 0.01000 0.02000 0.04000 0.05000 0.15000 0.20000	115.15 Sq In Are Sq In Are In Throat In Net Val In Valve 2 to TDC) = DC to BDC DC to IVC VO to EVC Opens Deg BTDC 60.00 53.75 49.77 44.09 35.29 31.62 19.86 11.42 1.33	ea = Valve I a = 50126. Area = 3193 Ve Area (Va Area = 25563 5.828 0 = 95.573 0 = 20.391 0 = 25.245 Closes Du Deg ABDC 103.33 3 96.07 3 92.50 3 85.91 3 76.00 3 71.83 3 61.09 3 50.43 3 41.18 3 32.21 3	0.0000 Duration (57 34.69 alve Area 3.21 uration 343.33 329.82 322.27 310.00 291.29 283.45 260.96 241.85 222.51	2.0280 • 0.000 * - Valve = 57.80 57.72 57.70 57.50 57.08 57.08 55.83 54.96 53.14			if head	-	cle VE = 1.53308
Totals Ma: Tot Tot Intake Intake Intake Intake	x Total CFM x Total CFM tal CFM Sq : tal CFM Sq : tal CFM Sq : BTDC (IVO f Pumping (T) Ramming (B) Overlap (T) Lift 0.00000 0.00600 0.01000 0.02000 0.04000 0.05000 0.15000 0.25000	115.19 Sq In Are Sq In Are In Throat In Net Val In Valve 2 to TDC) = DC to BDC DC to IVC VO to EVC Opens Deg BTDC 60.00 53.75 49.77 44.09 35.29 31.62 19.86 11.42 1.33 -7.79	ea = Valve I ea = 50126. Area = 3193 Ve Area (Va area = 25563 5.828 0 = 95.573 0 = 20.391 0 = 25.245 Closes Du Deg ABDC 103.33 3 96.07 3 92.50 3 85.91 3 76.00 3 71.83 3 61.09 3 50.43 3 41.18 3 32.21 3 23.09 3	0.0000 Duration (57 34.69 alve Area 3.21 uration 343.33 329.82 322.27 310.00 291.29 283.45 260.96 241.85 222.51 204.43 186.37	2.0280 • 0.000 * - Valve = 57.80 57.72 57.70 57.50 57.08 55.83 54.96 53.14 50.78			if head	-	cle VE = 1.53308
Totals Ma: Tot Tot Intake Intake Intake Intake	x Total CFM x Total CFM tal CFM Sq : tal CFM Sq : tal CFM Sq : BTDC (IVO f Pumping (T) Ramming (B) Overlap (T) Lift 0.00000 0.00600 0.00000 0.01000 0.02000 0.04000 0.05000 0.15000 0.25000 0.30000 0.35000	115.19 Sq In Are Sq In Are In Throat In Net Val In Valve 7 to TDC) = DC to BDC DC to IVC VO to EVC Opens Deg BTDC 60.00 53.75 49.77 44.09 35.29 31.62 19.86 11.42 1.33 -7.79 -16.71 -25.64	<pre>ea = Valve I ea = 50126 Area = 3199 .ve Area (Va area = 25563 5.828 0 = 95.573 0 = 20.391 0 = 25.245 Closes Du Deg ABDC 103.33 1 96.07 2 92.50 1 92.50 1 76.00 2 71.83 2 61.09 2 50.43 2 41.18 2 32.21 2 23.09 1 4.24 1 </pre>	0.0000 Duration (57 34.69 alve Area 3.21 uration 343.33 329.82 322.27 310.00 291.29 283.45 260.96 241.85 222.51 204.43 186.37 168.59	2.0280 Area 57.80 57.72 57.70 57.08 57.08 55.83 54.96 53.14 50.78 47.89 44.42			if head	-	cle VE = 1.53308
Totals Ma: Tot Tot Intake Intake Intake Intake	x Total CFM x Total CFM tal CFM Sq : tal CFM Sq : tal CFM Sq : BTDC (IVO f Pumping (T) Ramming (B) Overlap (T) Lift 0.00000 0.00600 0.00600 0.01000 0.02000 0.04000 0.15000 0.25000 0.35000 0.35000 0.40000	115.19 Sq In Are Sq In Are In Throat In Net Val In Valve 7 to TDC) = DC to BDC DC to IVC VO to EVC Opens Deg BTDC 60.00 53.75 49.77 44.09 35.29 31.62 19.86 11.42 1.33 -7.79 -16.71 -25.64 -35.16	<pre>ea = Valve I ba = 50126.4 Area = 3192 .ve Area (Va area = 25563 5.828 0 = 95.573 0 = 20.391 0 = 25.245 Closes Du Deg ABDC 103.33 1 96.07 2 92.50 1 85.91 1 76.00 1 71.83 2 61.09 1 32.21 2 33.09 1 4.24 1 5.00 1</pre>	0.0000 Duration (57 34.69 alve Area 3.21 uration 343.33 329.82 322.27 310.00 291.29 283.45 241.85 222.51 204.43 186.37 168.59 149.84	2.0280 • 0.000 * - Valve = 57.80 57.72 57.70 57.08 57.08 55.83 54.96 53.14 50.78 47.89 44.42 40.43			if head	-	cle VE = 1.53308
Totals Ma: Tot Tot Intake Intake Intake Intake	x Total CFM x Total CFM tal CFM Sq : tal CFM Sq : tal CFM Sq : BTDC (IVO f Pumping (T) Ramming (B) Overlap (T) Lift 0.00000 0.00600 0.00600 0.01000 0.02000 0.04000 0.15000 0.25000 0.35000 0.35000 0.40000 0.45000	115.19 Sq In Are Sq In Are In Throat In Net Val In Valve A to TDC) = DC to BDC DC to IVC VO to EVC Opens Deg BTDC 60.00 53.75 49.77 44.09 35.29 31.62 19.86 11.42 1.33 -7.79 -16.71 -25.64 -35.16 -45.60	ea = Valve I ea = 50126.(Area = 319; ve Area (Va area = 2556; 5.828) = 95.573) = 20.391) = 25.245 Closes Du Deg ABDC 103.33 1 96.07 1 92.50 1 85.91 1 76.00 2 71.83 2 61.09 2 32.21 2 23.09 1 4.24 1 5.00 1 5.65 1	0.0000 Duration (57 34.69 alve Area 3.21 uration 343.33 329.82 322.27 310.00 291.29 283.45 260.96 241.85 222.51 204.43 186.37 168.59 149.84 128.75	2.0280 • 0.000 * - Valve = 57.80 57.72 57.70 57.50 57.08 55.83 54.96 53.14 50.78 47.89 44.42 40.43 35.98			if head	-	cle VE = 1.53308
Totals Ma: Tot Tot Intake Intake Intake Intake	x Total CFM x Total CFM tal CFM Sq : tal CFM Sq : tal CFM Sq : BTDC (IVO f Pumping (T) Ramming (B) Overlap (T) Lift 0.00000 0.00600 0.00600 0.01000 0.02000 0.04000 0.15000 0.25000 0.35000 0.35000 0.40000	115.19 Sq In Are Sq In Are In Throat In Net Val In Valve 7 to TDC) = DC to BDC DC to IVC VO to EVC Opens Deg BTDC 60.00 53.75 49.77 44.09 35.29 31.62 19.86 11.42 1.33 -7.79 -16.71 -25.64 -35.16	ea = Valve I ea = 50126.(Area = 319; ve Area (Va area = 2556; 5.828) = 95.573) = 20.391) = 25.245 Closes Du Deg ABDC 103.33 1 96.07 1 92.50 1 85.91 1 76.00 2 71.83 2 61.09 2 32.21 2 23.09 1 4.24 1 5.00 1 5.65 1	0.0000 Duration (57 34.69 alve Area 3.21 uration 343.33 329.82 322.27 310.00 291.29 283.45 241.85 222.51 204.43 186.37 168.59 149.84	2.0280 • 0.000 * - Valve = 57.80 57.72 57.70 57.08 57.08 55.83 54.96 53.14 50.78 47.89 44.42 40.43			if head	-	cle VE = 1.53308
Totals Ma: Tot Tot Intake Intake Intake Intake	x Total CFM x Total CFM tal CFM Sq : tal CFM Sq : tal CFM Sq : BTDC (IVO f Pumping (T) Ramming (B) Overlap (T) Lift 0.00000 0.00600 0.00600 0.01000 0.02000 0.04000 0.15000 0.25000 0.35000 0.35000 0.40000 0.45000	115.19 Sq In Are Sq In Are In Throat In Net Val In Valve A to TDC) = DC to BDC DC to IVC VO to EVC Opens Deg BTDC 60.00 53.75 49.77 44.09 35.29 31.62 19.86 11.42 1.33 -7.79 -16.71 -25.64 -35.16 -45.60	ea = Valve I ea = 50126.(Area = 319; ve Area (Va area = 2556; 5.828) = 95.573) = 20.391) = 25.245 Closes Du Deg ABDC 103.33 1 96.07 1 92.50 1 85.91 1 76.00 2 71.83 2 61.09 2 32.21 2 23.09 1 4.24 1 5.00 1 5.65 1	0.0000 Duration (57 34.69 alve Area 3.21 uration 343.33 329.82 322.27 310.00 291.29 283.45 260.96 241.85 222.51 204.43 186.37 168.59 149.84 128.75	2.0280 • 0.000 * - Valve = 57.80 57.72 57.70 57.50 57.08 55.83 54.96 53.14 50.78 47.89 44.42 40.43 35.98			if head	-	cle VE = 1.53308
Totals Max Tot Tot Intake Intake Intake Intake VALVE	x Total CFM x Total CFM tal CFM Sq : tal CFM Sq : tal CFM Sq : BTDC (IVO f Pumping (T) Ramming (B) Overlap (T) Lift 0.00000 0.00600 0.01000 0.02000 0.04000 0.05000 0.15000 0.25000 0.35000 0.40000 0.45000 0.50000	115.19 Sq In Are Sq In Are In Throat In Net Val In Valve 2 to TDC) = DC to BDC DC to IVC VO to EVC Opens Deg BTDC 60.00 53.75 49.77 44.09 35.29 31.62 19.86 11.42 1.33 -7.79 -16.71 -25.64 -35.16 -45.60 -57.71	ea = Valve I ea = 50126.(Area = 319) ve Area (Va area = 25563 5.828 9 = 95.573 9 = 20.391 9 = 25.245 Closes Dr Deg ABDC 103.33 1 9 2.50 2 85.91 1 76.00 2 71.83 2 61.09 2 50.43 2 41.18 2 32.21 2 23.09 1 14.24 1 5.00 2 -5.65 1 -18.48 1	0.0000 Duration (57 34.69 alve Area 3.21 uration 343.33 329.82 322.27 310.00 291.29 283.45 260.96 241.85 222.51 204.43 186.37 168.59 149.84 128.75 103.81	2.0280 Area 57.80 57.72 57.70 57.08 57.08 57.08 55.83 54.96 53.14 50.78 44.42 40.43 35.98 31.13			if head	-	cle VE = 1.53308
Totals Ma: Tot Tot Intake Intake Intake Intake	x Total CFM x Total CFM tal CFM Sq : tal CFM Sq : tal CFM Sq : BTDC (IVO f Pumping (T) Ramming (B) Overlap (T) Lift 0.00000 0.00600 0.01000 0.01000 0.02000 0.04000 0.15000 0.25000 0.35000 0.40000 0.45000 0.55000	115.19 Sq In Are Sq In Are In Throat In Net Val In Valve 2 to TDC) = DC to BDC DC to IVC VO to EVC Opens Deg BTDC 60.00 53.75 49.77 44.09 35.29 31.62 19.86 11.42 1.33 -7.79 -16.71 -25.64 -45.60 -57.71 -75.74	<pre>ba = Valve I ba = 50126. Area = 3199 Ve Area (Va barea = 2556) 5.828 0 = 95.573 0 = 20.391 0 = 25.245 Closes Du Deg ABDC 103.33 1 96.07 1 92.50 1 76.00 1 71.83 1 61.09 1 50.43 1 41.18 1 32.21 1 23.09 1 4.24 1 5.65 1 -18.48 1 -34.56 1</pre>	0.0000 Duration (57 34.69 alve Area 3.21 uration 343.33 329.82 322.27 310.00 291.29 283.45 2260.96 241.85 222.51 204.43 186.37 186.37 149.84 128.75 103.81 69.71	2.0280 • 0.000 * - Valve * 57.80 57.72 57.70 57.50 57.08 57.08 55.83 54.96 53.14 50.78 47.89 44.42 40.43 35.98 31.13 20.41			if head	-	cle VE = 1.53308
Totals Max Tot Tot Intake Intake Intake Intake VALVE	x Total CFM x Total CFM tal CFM Sq : tal CFM Sq : tal CFM Sq : BTDC (IVO f Pumping (T) Ramming (B) Overlap (T) Lift 0.00000 0.00600 0.01000 0.02000 0.04000 0.05000 0.15000 0.25000 0.35000 0.40000 0.45000 0.55000 0.55000	115.19 Sq In Are Sq In Are In Throat In Net Val In Valve 2 to TDC) = DC to BDC DC to IVC VO to EVC Opens Deg BTDC 60.00 53.75 49.77 44.09 35.29 31.62 19.86 11.42 1.33 -7.79 -16.71 -25.64 -35.16 45.60 57.71 -75.74	<pre>ba = Valve I ba = 50126. Area = 3199 Ve Area (Va barea = 25563 5.828 0 = 95.573 0 = 20.391 0 = 25.245 Closes Du Deg ABDC 103.33 1 96.07 1 92.50 1 85.91 1 76.00 1 71.83 1 61.09 1 50.43 1 50.43 1 23.09 1 4.24 1 5.00 1 -5.65 1 -18.48 1 -34.56 1 143.33 4</pre>	0.0000 Duration (57 34.69 alve Area 3.21 uration 343.33 329.82 322.27 310.00 291.29 283.45 2260.96 241.85 222.51 204.43 186.37 168.59 149.84 128.75 103.81 69.71 418.33	2.0280 Area 57.80 57.72 57.70 57.50 57.08 55.83 54.96 53.14 50.78 47.89 44.42 40.43 35.98 31.13 20.41 39.34			if head	-	cle VE = 1.53308
Totals Max Tot Tot Intake Intake Intake Intake VALVE	x Total CFM x Total CFM tal CFM Sq : tal CFM Sq : tal CFM Sq : BTDC (IVO f Pumping (T) Ramming (B) Overlap (T) Lift 0.00000 0.00600 0.01000 0.02000 0.04000 0.15000 0.15000 0.25000 0.35000 0.40000 0.45000 0.55000 0.55000 0.00600 0.01000	115.19 Sq In Are Sq In Are In Throat In Net Val In Valve 2 to TDC) = DC to BDC DC to IVC VO to EVC Opens Deg BTDC 60.00 53.75 49.77 44.09 35.29 31.62 19.86 11.42 1.33 -7.79 -16.71 -25.64 -35.16 -45.60 57.71 -75.74 95.00 80.00	<pre>ba = Valve I ba = 50126 Area = 3199 Ve Area (Va area = 25563 5.828 0 = 95.573 0 = 20.391 0 = 25.245 Closes Du Deg ABDC 103.33 2 96.07 3 92.50 3 85.91 3 76.00 2 71.83 2 61.09 2 50.43 2 61.09 2 14.24 2 5.00 2 -5.65 2 -18.48 2 -34.56 143.33 4 125.00 3 </pre>	0.0000 Duration (57 34.69 alve Area 3.21 uration 343.33 329.82 322.27 310.00 291.29 283.45 2241.85 222.51 204.43 186.37 168.59 149.84 128.75 103.81 69.71 418.33 385.00	2.0280 Area 57.80 57.72 57.70 57.50 57.08 55.83 54.96 53.14 50.78 47.89 44.42 40.43 35.98 31.13 20.41 39.34 39.20			if head	-	cle VE = 1.53308
Totals Max Tot Tot Intake Intake Intake Intake VALVE	x Total CFM x Total CFM tal CFM Sq : tal CFM Sq : tal CFM Sq : BTDC (IVO f Pumping (T) Ramming (B) Overlap (T) Lift 0.00000 0.00600 0.01000 0.02000 0.04000 0.05000 0.15000 0.25000 0.35000 0.40000 0.45000 0.55000 0.55000	115.19 Sq In Are Sq In Are In Throat In Net Val In Valve 2 to TDC) = DC to BDC DC to IVC VO to EVC Opens Deg BTDC 60.00 53.75 49.77 44.09 35.29 31.62 19.86 11.42 1.33 -7.79 -16.71 -25.64 -35.16 45.60 57.71 -75.74	<pre>ba = Valve I ba = 50126 Area = 3199 Ve Area (Va area = 25563 5.828 0 = 95.573 0 = 20.391 0 = 25.245 Closes Du Deg ABDC 103.33 2 96.07 3 92.50 3 85.91 3 76.00 2 71.83 2 61.09 2 50.43 2 61.09 2 14.24 2 5.00 2 -5.65 2 -18.48 2 -34.56 143.33 4 125.00 3 </pre>	0.0000 Duration (57 34.69 alve Area 3.21 uration 343.33 329.82 322.27 310.00 291.29 283.45 2260.96 241.85 222.51 204.43 186.37 168.59 149.84 128.75 103.81 69.71 418.33	2.0280 Area 57.80 57.72 57.70 57.50 57.08 55.83 54.96 53.14 50.78 47.89 44.42 40.43 35.98 31.13 20.41 39.34			if head	-	cle VE = 1.53308
Totals Max Tot Tot Intake Intake Intake Intake VALVE	x Total CFM x Total CFM tal CFM Sq : tal CFM Sq : tal CFM Sq : BTDC (IVO f Pumping (T) Ramming (B) Overlap (T) Lift 0.00000 0.00600 0.01000 0.02000 0.04000 0.15000 0.15000 0.25000 0.35000 0.40000 0.45000 0.55000 0.00600 0.01000 0.02000	115.19 Sq In Are Sq In Are In Throat In Net Val In Valve 2 to TDC) = DC to BDC DC to IVC VO to EVC Opens Deg BTDC 60.00 53.75 49.77 44.09 35.29 31.62 19.86 11.42 1.33 -7.79 -16.71 -25.64 -35.16 -45.60 -57.71 -75.74 95.00 80.00 53.33	<pre>ba = Valve I ba = 50126. Area = 319; Ve Area (Va area = 2556; 5.828 0 = 95.573 0 = 20.391 0 = 25.245 Closes Du Deg ABDC 103.33 1 96.07 1 92.50 1 85.91 1 76.00 2 50.43 1 83.221 2 23.09 1 4.24 1 5.00 1 -5.65 1 -18.48 1 -34.56 1 143.33 4 125.00 1 95.71 1</pre>	0.0000 Duration (57 34.69 alve Area 3.21 uration 343.33 329.82 322.27 310.00 291.29 283.45 222.51 204.43 186.37 168.59 149.84 128.75 103.81 69.71 418.33 385.00 329.05	2.0280 • 0.000 * - Valve = 57.80 57.72 57.70 57.50 57.08 55.83 54.96 53.14 50.78 47.89 44.42 40.43 35.98 31.13 20.41 39.34 39.20 38.72			if head	-	cle VE = 1.53308
Totals Max Tot Tot Intake Intake Intake Intake VALVE	x Total CFM x Total CFM tal CFM Sq : tal CFM Sq : tal CFM Sq : BTDC (IVO f Pumping (T) Ramming (B) Overlap (T) Lift 0.00000 0.00600 0.01000 0.02000 0.04000 0.15000 0.25000 0.35000 0.35000 0.40000 0.45000 0.55000 0.00600 0.01000 0.02000 0.01000 0.02000 0.04000	115.19 Sq In Are Sq In Are In Throat In Net Val In Valve 7 to TDC) = DC to BDC DC to IVC VO to EVC Opens Deg BTDC 60.00 53.75 49.77 44.09 35.29 31.62 19.86 11.42 1.33 -7.79 -16.71 -25.64 -35.16 -45.60 -57.71 -75.74 95.00 80.00 53.33 35.88	<pre>ea = Valve I ba = 50126.4 Area = 3192 Ve Area (Va area = 25563 5.828 0 = 95.573 0 = 20.391 0 = 25.245 Closes Du Deg ABDC 103.33 1 96.07 1 92.50 1 85.91 1 76.00 1 71.83 1 61.09 1 50.43 1 32.21 1 32.21 1 32.21 1 32.09 1 4.24 1 5.00 1 -5.65 1 -18.48 1 -34.56 1 143.33 4 125.00 1 95.71 1 76.67 1</pre>	0.0000 Duration (57 34.69 alve Area 3.21 uration 343.33 329.82 322.27 310.00 291.29 283.45 222.51 204.43 186.37 186.37 186.37 149.84 128.75 103.81 69.71 418.33 385.00 329.05 292.55	2.0280 Area 57.80 57.72 57.70 57.08 57.08 55.83 54.96 53.14 50.78 47.89 44.42 40.43 35.98 31.13 20.41 39.34 39.20 38.72 37.99			if head	-	cle VE = 1.53308
Totals Max Tot Tot Intake Intake Intake Intake VALVE	x Total CFM x Total CFM tal CFM Sq : tal CFM Sq : tal CFM Sq : BTDC (IVO F Pumping (T) Ramming (B) Overlap (T) Lift 0.00000 0.00600 0.01000 0.02000 0.04000 0.15000 0.25000 0.35000 0.35000 0.40000 0.45000 0.55000 0.00600 0.00600 0.01000 0.02000 0.02000 0.02000 0.00000 0.02000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	115.19 Sq In Are Sq In Are In Throat In Net Val In Valve 7 to TDC) = DC to BDC DC to IVC VO to EVC Opens Deg BTDC 60.00 53.75 49.77 44.09 35.29 31.62 19.86 11.42 1.33 -7.79 -16.71 -25.64 -35.16 -45.60 -57.71 -75.74 95.00 80.00 53.33 35.88 30.00	<pre>ea = Valve I ba = 50126.4 Area = 3192 .ve Area (Va area = 25563 5.828 9 = 95.573 9 = 20.391 9 = 25.245 Closes Du Deg ABDC 103.33 2 96.07 2 96.07 2 92.50 2 85.91 3 76.00 2 32.21 2 32.21 2 32.21 2 32.21 2 33.31 2 41.18 2 32.21 2 32.21 2 33.21 2 33.31 2 41.33 4 41.33 4 5.00 2 5.65 2 -18.48 2 -34.56 1 143.33 4 125.00 2 55.71 2 76.67 2 70.00 2</pre>	0.0000 Duration (57 34.69 alve Area 3.21 uration 343.33 329.82 322.27 310.00 291.29 283.45 204.43 186.37 186.37 186.37 186.59 149.84 128.75 103.81 69.71 418.33 385.00 329.05 292.55 280.00	2.0280 • 0.000 * - Valve = 57.80 57.72 57.70 57.08 57.08 55.83 54.96 53.14 50.78 47.89 44.42 40.43 35.98 31.13 20.41 39.34 39.20 38.72 37.99 37.99 37.99			if head	-	cle VE = 1.53308
Totals Max Tot Tot Intake Intake Intake Intake VALVE	x Total CFM x Total CFM tal CFM Sq : tal CFM Sq : tal CFM Sq : BTDC (IVO f Pumping (T) Ramming (B) Overlap (T) Lift 0.00000 0.00600 0.01000 0.02000 0.04000 0.15000 0.25000 0.35000 0.35000 0.40000 0.45000 0.55000 0.00600 0.01000 0.02000 0.01000 0.02000 0.04000	115.19 Sq In Are Sq In Are In Throat In Net Val In Valve 7 to TDC) = DC to BDC DC to IVC VO to EVC Opens Deg BTDC 60.00 53.75 49.77 44.09 35.29 31.62 19.86 11.42 1.33 -7.79 -16.71 -25.64 -35.16 -45.60 -57.71 -75.74 95.00 80.00 53.33 35.88	<pre>ea = Valve I ba = 50126.4 Area = 3192 .ve Area (Va area = 25563 5.828 9 = 95.573 9 = 20.391 9 = 25.245 Closes Du Deg ABDC 103.33 2 96.07 2 96.07 2 92.50 2 85.91 3 76.00 2 32.21 2 32.21 2 32.21 2 32.21 2 33.31 2 41.18 2 32.21 2 32.21 2 33.21 2 33.31 2 41.33 4 41.33 4 5.00 2 5.65 2 -18.48 2 -34.56 1 143.33 4 125.00 2 55.71 2 76.67 2 70.00 2</pre>	0.0000 Duration (57 34.69 alve Area 3.21 uration 343.33 329.82 322.27 310.00 291.29 283.45 222.51 204.43 186.37 186.37 186.37 149.84 128.75 103.81 69.71 418.33 385.00 329.05 292.55	2.0280 Area 57.80 57.72 57.70 57.08 57.08 55.83 54.96 53.14 50.78 47.89 44.42 40.43 35.98 31.13 20.41 39.34 39.20 38.72 37.99			if head	-	cle VE = 1.53308
Totals Max Tot Tot Intake Intake Intake Intake VALVE	x Total CFM x Total CFM tal CFM Sq : tal CFM Sq : tal CFM Sq : BTDC (IVO F Pumping (T) Ramming (B) Overlap (T) Lift 0.00000 0.00600 0.01000 0.02000 0.04000 0.15000 0.25000 0.35000 0.35000 0.40000 0.45000 0.55000 0.00600 0.00600 0.01000 0.02000 0.02000 0.02000 0.00000 0.02000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	115.19 Sq In Are Sq In Are In Throat In Net Val In Valve 7 to TDC) = DC to BDC DC to IVC VO to EVC Opens Deg BTDC 60.00 53.75 49.77 44.09 35.29 31.62 19.86 11.42 1.33 -7.79 -16.71 -25.64 -35.16 -45.60 -57.71 -75.74 95.00 80.00 53.33 35.88 30.00	<pre>ea = Valve I ba = 50126.4 Area = 3192 .ve Area (Va area = 25563 5.828 9 = 95.573 9 = 20.391 9 = 25.245 Closes DD Deg ABDC 103.33 1 9 2.50 1 85.91 1 76.00 1 71.83 1 61.09 1 50.43 1 83.21 1 23.09 1 14.24 1 5.00 1 5.65 1 -18.48 1 -34.56 1 143.33 4 125.00 1 76.67 1 70.00 1 53.79 1</pre>	0.0000 Duration (57 34.69 alve Area 3.21 uration 343.33 329.82 322.27 310.00 291.29 283.45 204.43 186.37 186.37 186.37 186.59 149.84 128.75 103.81 69.71 418.33 385.00 329.05 292.55 280.00	2.0280 • 0.000 * - Valve = 57.80 57.72 57.70 57.08 57.08 55.83 54.96 53.14 50.78 47.89 44.42 40.43 35.98 31.13 20.41 39.34 39.20 38.72 37.99 37.99 37.99			if head	-	cle VE = 1.53308
Totals Max Tot Tot Intake Intake Intake Intake VALVE	x Total CFM x Total CFM tal CFM Sq : tal CFM Sq : tal CFM Sq : BTDC (IVO f Pumping (T) Ramming (B) Overlap (T) Lift 0.00000 0.00600 0.01000 0.02000 0.04000 0.15000 0.25000 0.35000 0.35000 0.45000 0.45000 0.55000 0.00600 0.01000 0.02000 0.04000 0.05000 0.05000 0.05000 0.10000 0.15000	115.19 Sq In Are Sq In Are In Throat In Net Val In Valve 2 to TDC) = DC to BDC DC to IVC VO to EVC Opens Deg BTDC 60.00 53.75 49.77 44.09 35.29 31.62 19.86 11.42 1.33 -7.79 -16.71 -25.64 -35.16 -45.60 -57.71 -75.74 95.00 80.00 53.33 35.88 30.00 14.05 -1.43	ea = Valve I ba = 50126.(Area = 319) ve Area (Va area = 25563 5.828) = 95.573) = 20.391) = 25.245 Closes D Deg ABDC 103.33 1 92.50 2 85.91 3 76.00 2 71.83 2 61.09 2 50.43 2 41.18 3 32.21 2 23.09 2 14.24 1 5.00 2 -5.65 2 -18.48 2 -34.56 1 143.33 4 125.00 3 95.71 2 70.00 3 53.79 2 38.57 2 23.79 2 23.71 2 23.79 2 23.71 2 23.79 2 23.71 2 23.75 2 23.75	0.0000 Duration (57 34.69 alve Area 3.21 uration 343.33 329.82 322.27 310.00 291.29 283.45 260.96 241.85 222.51 204.43 186.37 149.84 128.75 103.81 69.71 418.33 329.05 292.55 280.00 247.85 217.14	2.0280 • O.000 * - Valve * - Valve * 57.80 57.72 57.70 57.50 57.08 57.08 57.08 55.83 54.96 53.14 50.78 44.42 40.43 35.98 31.13 20.41 39.34 39.20 38.72 37.99 36.35 33.42			if head	-	cle VE = 1.53308
Totals Max Tot Tot Intake Intake Intake Intake VALVE	x Total CFM x Total CFM tal CFM Sq : tal CFM Sq : tal CFM Sq : BTDC (IVO F Pumping (T) Ramming (B) Overlap (T) Lift 0.00000 0.00600 0.01000 0.02000 0.04000 0.25000 0.30000 0.35000 0.35000 0.40000 0.55000 0.00600 0.01000 0.02000 0.02000 0.02000 0.00000 0.02000 0.00000 0.02000 0.00000 0.02000 0.00000 0.02000 0.02000 0.00000 0.02000 0.00000 0.02000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	115.19 Sq In Are Sq In Are Sq In Are In Throat In Net Val In Valve A to TDC) = DC to BDC DC to IVC VO to EVC Opens Deg BTDC 60.00 53.75 49.77 44.09 35.29 31.62 19.86 11.42 1.33 -7.79 -16.71 -25.64 -35.16 -45.60 -57.71 -75.74 95.00 80.00 53.33 35.88 30.00 14.05	ea = Valve I ba = 50126.(Area = 319) ve Area (Va area = 25563 5.828) = 95.573) = 20.391) = 25.245 Closes D Deg ABDC 103.33 1 92.50 2 85.91 3 76.00 2 71.83 2 61.09 2 50.43 2 41.18 3 32.21 2 23.09 2 14.24 1 5.00 2 -5.65 2 -18.48 2 -34.56 1 143.33 4 125.00 3 95.71 2 70.00 3 53.79 2 38.57 2 23.79 2 23.71 2 23.79 2 23.71 2 23.79 2 23.71 2 23.75 2 23.75	0.0000 Duration (57 34.69 alve Area 3.21 aration 343.33 329.82 322.27 310.00 291.29 283.45 260.96 241.85 222.51 204.43 168.59 149.84 128.75 103.81 69.71 418.33 329.05 292.55 280.00 247.85	2.0280 Area 57.80 57.72 57.70 57.50 57.08 57.08 57.08 55.83 54.96 53.14 50.78 47.89 44.42 40.43 35.98 31.13 20.41 39.34 39.20 38.72 37.99 37.99 37.99 37.99 36.35			if head	-	cle VE = 1.53308

0.25000	-30.00	10.00	160.00	29.12
0.30000	-46.55	-6.67	126.78	23.53
0.35000	-70.00	-29.00	81.00	16.92
Major Ini	-ongity 40	9 05		

Major Intensity 49.05 Minor Intensity 105.00

	е х н	A U	S T									
		io = 1.5			= Lash $=$ (-	le = 23			
Cam	Valve		Time	Time	Valve		Valve			Cylinder	User	L/D
Lift	Lift	Angle	Port Area	Port Area	Velocity FPS	Acceler ation	Lift Vert	Lift Horiz	Travel	volume cc	Supplied Valve Air Dischar	
			cm^2	cm^2/cc	FFS	FPS ²	Verc	HOLIZ		66	Flow Coeffic	-
0.0000	-0.0300	-340.0			0.0000	0.0000						
	-0.0285				0.4875	1.9013						
0.0040	-0.0240	-320.0			1.4625	3.8025						
	-0.0195				1.4625	0.0000						
	-0.0150				1.4625	0.0000						
	-0.0105				1.4625	0.0000						
	-0.0060		0 1100		1.4625	0.0000	0 0104	0 0050	1 0 6 1 5	202 240	7.83 0.7906	0 0004
0.0290 0.0450		-270.0 -260.0	0.1123 0.3118	0.0002	6.3375 7.8000	19.0125	0.0124		1.8615 2.1364	383.340 439.948	21.75 0.7906	
0.0600		-250.0	0.4989	0.0007	7.3125	-1.9012			2.3891	491.983	34.80 0.7906	
0.0780		-240.0	0.7234	0.0011	8.7750		0.0801		2.6140	538.281	50.46 0.7906	
0.1040		-230.0	1.0477	0.0016	12.6750	15.2100			2.8071	578.059	73.08 0.7906	
0.1380	0.1770	-220.0	1.4718	0.0022	16.5750	15.2100	0.1629	0.0692	2.9663	610.847	102.66 0.7906	0.1106
0.1740	0.2310	-210.0	1.9208	0.0029	17.5500	3.8025	0.2126	0.0903	3.0905	636.413	127.47 0.7521	0.1444
0.2100		-200.0	2.3698	0.0035	17.5500		0.2623		3.1792	654.672	147.45 0.7052	
0.2420		-190.0	2.7690	0.0041	15.6000	-7.6050			3.2323	665.615	166.53 0.6816	
0.2700		-180.0	3.1182	0.0047	13.6500	-7.6050			3.2500	669.259	183.75 0.6679	
0.2960		-170.0	3.4425	0.0051	12.6750	-3.8025			3.2323	665.615	196.52 0.6470	
0.3220 0.3440		-160.0 -150.0	3.7668 4.0412	0.0056 0.0060	12.6750 10.7250	-7.6050	0.4170		3.1792 3.0905	654.672 636.413	203.54 0.6124 209.48 0.5875	
0.3590		-140.0	4.2283	0.0063		-13.3088			2.9663	610.847	214.81 0.5758	
0.3710		-130.0	4.3780	0.0065	5.8500	-5.7037			2.8071	578.059	220.75 0.5715	
0.3780		-120.0	4.4653	0.0067	3.4125	-9.5062			2.6140	538.281	224.21 0.5691	
0.3810		-110.0	4.5027	0.0067	1.4625	-7.6050			2.3891	491.983	225.70 0.5681	
0.3790	0.5385	-100.0	4.4777	0.0067	-0.9750	-9.5062	0.4957	0.2104	2.1364	439.948	224.71 0.5688	0.3366
0.3740	0.5310	-90.0	4.4154	0.0066	-2.4375	-5.7037	0.4888	0.2075	1.8615	383.340	222.23 0.5704	0.3319
0.3670	0.5205	-80.0	4.3281	0.0065	-3.4125	-3.8025			1.5721	323.732	218.77 0.5729	
0.3490	0.4935	-70.0	4.1036	0.0061		-20.9137			1.2776	263.083	210.83 0.5823	
0.3310	0.4665	-60.0	3.8790	0.0058	-8.7750		0.4294		0.9890	203.652	205.97 0.6018	
0.3070	0.4305	-50.0	3.5797		-11.7000				0.7181	147.867	199.49 0.6316	
0.2790 0.2520	0.3885	-40.0 -30.0	3.2305 2.8937		-13.6500 -13.1625	-7.6050	0.3203		0.4767 0.2759	98.165 56.818	189.29 0.6641 172.68 0.6763	
0.2200	0.3000	-20.0	2.4946		-15.6000	-9.5062			0.1252	25.774	153.00 0.6951	
0.1860	0.2490	-10.0	2.0705		-16.5750	-3.8025			0.0317	6.523	134.13 0.7342	
0.1530	0.1995		1.6589		-16.0875		0.1836		0.0000	.000	115.71 0.7906	
0.1200	0.1500	10.0	1.2473	0.0019	-16.0875	0.0000	0.1381	0.0586	0.0317	6.523	87.00 0.7906	0.0938
0.0890	0.1035	20.0	0.8606	0.0013	-15.1125	3.8025	0.0953	0.0404	0.1252	25.774	60.03 0.7906	0.0647
0.0630	0.0645	30.0	0.5363		-12.6750		0.0594		0.2759	56.818	37.41 0.7906	0.0403
0.0420	0.0330	40.0	0.2744		-10.2375		0.0304		0.4767	98.165	19.14 0.7906	
0.0270	0.0105	50.0	0.0873	0.0001	-7.3125	11.4075	0.0097	0.0041	0.7181	147.867	6.09 0.7906	0.0066
	-0.0045	60.0 70.0			-4.8750	9.5063 9.5062						
	-0.0120				-2.4375 -1.4625	3.8025						
	-0.0210				-1.4625	0.0000						
	-0.0255				-1.4625							
	-0.0300				-1.4625	0.0000						
	-0.0300											
Totals			83.3058	0.1245							53868	
) = 14.34	44							
				= 69.074								
		IDC to E				0.00		70 20				
Exnaust	Overia	p (1V0 t	0 EVC) =	= 22.813		0.000	00 5.	7038				
VALVE	Lift	٥n	ens Cl	Loses Di	iration							
		-	BDC Deg			Area						
	0.000				333.92	52.71						
	0.006	00 93	.85 5	:	326.85	52.71						
	0.010				322.13	52.71						
	0.020				313.07	52.47						
	0.040				296.67	51.94						
	0.050			:	289.05	51.94						
	0.100			:	257.56 235.29	50.71 49.31						
	0.200				235.29 215.64	49.31						
	5.200		··-	···· ·								

CAM

0.25000	26.48	-10.20	196.29	43.42
0.30000	16.88	-20.00	176.88	42.13
0.35000	5.95	-30.49	155.46	36.68
0.40000	-6.41	-42.74	130.85	32.65
0.45000	-19.23	-55.42	105.35	28.26
0.50000	-36.22	-72.41	71.37	18.54
0.00600	133.33	90.00	403.33	39.02
0.01000	120.00	76.67	376.67	38.87
0.02000	96.92	57.00	333.92	38.44
0.04000	83.13	41.33	304.46	38.08
0.05000	76.67	36.19	292.86	37.53
0.10000	51.54	16.45	247.99	35.73
0.15000	36.67	0.91	217.58	33.82
0.20000	22.78	-14.12	188.66	30.85
0.25000	7.14	-29.38	157.77	27.42
0.30000	-11.54	-47.50	120.96	21.65
0.35000	-34.00	-70.56	75.44	13.06

Example of METRIC

Bore = 2.6378 Stroke = 1.67323 Rod Length = 3.56299RPM = 16200Wrist Pin Offset = 0.0 Number of - Intake Valves = 2 - Exhaust Valves = 2 Intake Valve Size = 1.06299 Exhaust Valve Size = 0.90551 Intake Valve / Bore Ratio = 0.402984 Exhaust Valve / Bore Ratio = 0.343282 Intake Valve Area = 1.774918 sq. in. Exhaust Valve Area = 1.287972 sq. in. Intake Valve Stem Size = 0.17717 Exhaust Valve Stem Size = 0.17717 Intake Valve Stem Area = 0.049306 sq. in. Exhaust Valve Stem Area = 0.049306 sq. in. Valve Lift at which the Valve Area and Window / Curtain Area are the SAME SIZE At that point the velocity will be the same in both areas Intake Valve Lift = 0.265748 Inches Exhaust Valve Lift = 0.226378 Inches Intake Centerline = 111.0 User Selected DC - Discharge Coefficient = 0.5 Throat CSA (0.91) Intake = 1.4205 sq. in. Throat CSA (0.91) Exhaust = 1.0173 sq. in. Effective Throat CSA = 1.26516 Effective Throat CSA = 1.25684 Valve Lift at which the Throat Area and Window / Curtain Area are the SAME SIZE At that point the velocity will be the same in both areas Intake Valve Lift = 0.42537 Inches Exhaust Valve Lift = 0.35759 Inches

INTAKE Rocker Arm Ratio = 1.000 Valve Lash = 0.0000Valve Angle = 11.5 Valve Crank Valve Valve Valve Piston Cylinder Time Cam Time User $T_{\rm L}/D$ Lift Port Velocity Acceler Lift Lift Volume Supplied Valve Ratio Lift Angle Port Travel ation Air Discharge Area Area FPS Vert Horiz CC cm^2 cm^2/cc FPS² Flow Coefficient .000 0.0000 -72.0 0.0000 0.0000 .000 0.0000 -70.0 0.0000 0.0000 0.0177 0.0001 .020 0.0040 .020 0.0200 -68.0 3.1890 30.9969 15.460 54.508 .39 0.5129 0.0007 0.0300 .030 -66.0 0.0266 0.0002 1.5945 -15.4984 .029 0.0060 14.713 51.875 .59 0.5129 0.0011 0.0355 0.0002 .039 0.0080 49.264 .040 0.0400 -64.0 1.5945 0.0000 13.973 .79 0.5129 0.0015 0.0500 0.0000 .049 0.0100 .98 0.5129 0.0019 -62.0 0.0443 0.0003 1.5945 13.240 46,680 .050 .065 0.0650 -60.0 0.0576 0.0004 2.3917 7.7492 .064 0.0130 12.516 44.127 1.28 0.5129 0.0024 .075 0.0750 -58.0 0.0665 0.0004 1.5945 -7.7492 .073 0.0150 11.802 41.609 1.48 0.5129 0.0028 1.67 0.5129 0.0031 .085 0.0850 -56.0 0.0754 0.0005 1.5945 0.0000 .083 0.0169 11.098 39.129 1.87 0.5129 0.0035 .095 0.0950 -54.0 0.0842 0.0006 1.5945 0.0000 .093 0.0189 10.407 36.693 -52.0 0.0975 0.0007 7.7492 2.17 0.5129 0.0041 .110 0.1100 2.3917 .108 0.0219 9.730 34.304 2.36 0.5129 0.0044 .120 0.1200 -50.0 0.1064 0.0007 1.5945 -7.7492.118 0.0239 9.067 31.967 0.0008 1.5945 .127 0.0259 2.56 0.5129 0.0048 .130 0.1300 -48.0 0.1153 0.0000 8.419 29.684 0.1500 -46.0 0.1330 0.0009 3.1890 15.4984 .147 0.0299 7.789 27.461 2.95 0.5129 0.0056 .150 0.1550 -44.0 0.0009 0.7972 -23.2476 .152 0.0309 25.300 3.05 0.5129 0.0057 .155 0.1374 7.176 .165 0.1650 -42.0 0.1463 0.0010 1.5945 7.7492 .162 0.0329 6.582 23.207 3.25 0.5129 0.0061 .175 0.1750 -40.0 0.1552 0.0010 1.5945 0.0000 .171 0.0349 6.008 21.183 3.44 0.5129 0.0065 0.1900 -38.0 0.1685 0.0011 7.7492 5.455 3.74 0.5129 0.0070 .190 2.3917 .186 0.0379 19.234 0.2050 .201 0.0409 .205 -36.0 0.1818 0.0012 2.3917 0.0000 4.924 17.362 4.04 0.5129 0.0076 0.2350 -34.0 0.2084 0.0014 4.7835 23.2476 .230 0.0469 4.416 15.571 4.63 0.5129 0.0087 .235 .265 0.2650 -32.0 0.2350 0.0016 4.7835 0.0000 .260 0.0528 3.932 13.864 5.22 0.5129 0.0098 .295 0.2950 -30.0 0.2616 0.0017 4.7835 0.0000 .289 0.0588 3.473 5.81 0.5129 0.0109 12.244 .340 0.3400 -28.0 0.3015 0.0020 7.1752 23.2476 .333 0.0678 3.039 10.714 6.69 0.5129 0.0126 .395 0.3950 -26.0 0.3502 0.0023 8.7697 15.4984 .387 0.0788 2.631 9.277 7.78 0.5129 0.0146 .445 0.4450 -24.0 0.3945 0.0026 7.9724 -7.7492 .436 0.0887 2.251 7.936 8.76 0.5129 0.0165 .510 0.5100 -22.0 0.4522 0.0030 10.3642 23.2476 .500 0.1017 1.898 6.692 10.04 0.5129 0.0189 .590 0.5900 -20.0 0.5231 0.0035 12.7559 23.2476 .578 0.1176 1.574 5.549 11.61 0.5129 0.0219 0.7200 -18.0 0.6384 0.0043 20.7283 77.4921 .706 0.1435 1.279 4.508 14.17 0.5129 0.0267 .720 0.8500 0.0050 0.0000 .833 0.1695 16.73 0.5129 0.0315 .850 -16.0 0.7536 20.7283 1.013 3.571 0.9700 -14.0 0.8600 0.0057 19.1339 -15.4984 .951 0.1934 .777 2.741 19.09 0.5129 0.0359 .970 1.160 1.1600 -12.0 1.0285 0.0069 30.2953 108.4890 1.137 0.2313 .572 2.018 22.83 0.5129 0.0430 1.3550 1.355 -10.0 1.2014 0.0080 31.0925 7.7492 1.328 0.2701 .398 1.404 26.67 0.5129 0.0502 1.490 1.4900 -8.0 1.3211 0.0088 21.5256 -92.9906 1.460 0.2971 .255 .900 29.33 0.5129 0.0552 32.38 0.5129 0.0609 1.645 1.6450 -6.0 1.4585 0.0097 24.7146 30.9969 1.612 0.3280 .144 .507 -4.0 1.6137 0.0108 27.9035 30.9969 1.783 0.3628 1.820 1.8200 .064 .225 35.83 0.5129 0.0674

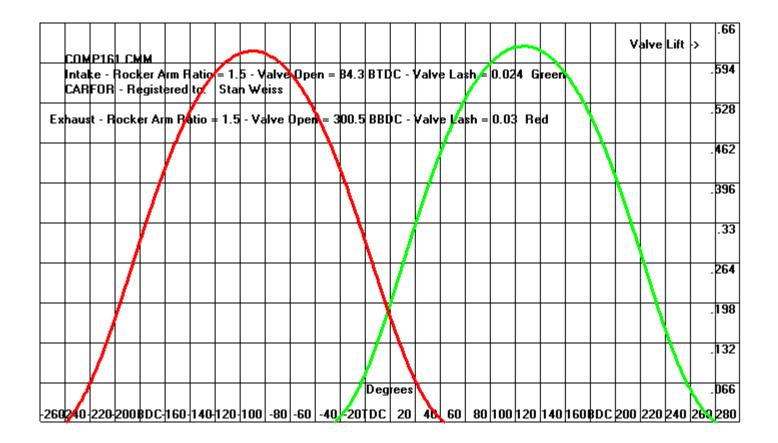
1.985	1.9850	-2.0	1.7600	0.0117	26.3091 -15.4984	1.945 0.3957	.016	.056	39.07 0.5129 0.0735
2.175	2.1750	TDC	1.9284	0.0129	30.2953 38.7461	2.131 0.4336	.000	.000	42.81 0.5129 0.0806
2.390	2.3900	2.0	2.1190	0.0141	34.2815 38.7461	2.342 0.4765	.016	.056	47.05 0.5129 0.0885
2.525	2.5250	4.0	2.2387	0.0149	21.5256-123.9874	2.474 0.5034	.064	.225	49.70 0.5129 0.0935
2.730	2.7300	6.0	2.4205	0.0162	32.6870 108.4890	2.675 0.5443	.144	.507	56.06 0.5350 0.1011
2.925	2.9250	8.0	2.5934	0.0173	31.0925 -15.4984	2.866 0.5832	.255	.900	62.28 0.5548 0.1083
3.150	3.1500	10.0	2.7929	0.0186	35.8760 46.4953	3.087 0.6280	.398	1.404	69.45 0.5745 0.1167
3.325	3.3250	12.0	2.9480	0.0197	27.9035 -77.4921	3.258 0.6629	.572	2.018	75.03 0.5880 0.1231
3.555	3.5550	14.0	3.1520	0.0210	36.6732 85.2413	3.484 0.7088	.777	2.741	82.37 0.6037 0.1317
3.740	3.7400	16.0	3.3160	0.0221	29.4980 -69.7429	3.665 0.7456	1.013	3.571	88.27 0.6149 0.1385
3.920	3.9200	18.0	3.4756	0.0232	28.7008 -7.7492	3.841 0.7815	1.279	4.508	94.01 0.6249 0.1452
4.115	4.1150	20.0	3.6485	0.0243	31.0925 23.2476	4.032 0.8204	1.574	5.549	100.23 0.6346 0.1524
4.395	4.3950	22.0	3.8967	0.0260	44.6457 131.7366	4.307 0.8762	1.898	6.692	109.16 0.6471 0.1628
4.545	4.5450	24.0	4.0297	0.0269	23.9173-201.4795	4.454 0.9061	2.251	7.936	113.94 0.6532 0.1683
4.730	4.7300	26.0	4.1937	0.0280	29.4980 54.2445	4.635 0.9430	2.631	9.277	119.84 0.6601 0.1752
4.925	4.9250	28.0	4.3666	0.0291	31.0925 15.4984	4.826 0.9819	3.039	10.714	126.06 0.6669 0.1824
5.100	5.1000	30.0	4.5218	0.0302	27.9035 -30.9969	4.998 1.0168	3.473	12.244	131.45 0.6716 0.1889
5.270	5.2700	32.0	4.6725	0.0312	27.1063 -7.7492	5.164 1.0507	3.932	13.864	135.26 0.6688 0.1952
5.410	5.4100	34.0	4.7966	0.0320	22.3228 -46.4953	5.301 1.0786	4.416	15.571	138.41 0.6666 0.2004
5.615	5.6150	36.0	4.9784	0.0332	32.6870 100.7398	5.502 1.1195	4.924	17.362	143.01 0.6636 0.2080
5.805	5.8050	38.0	5.1469	0.0343	30.2953 -23.2476	5.688 1.1573	5.455	19.234	147.27 0.6610 0.2150
5.925	5.9250	40.0	5.2533	0.0351	19.1339-108.4890	5.806 1.1813	6.008	21.183	149.96 0.6595 0.2194
6.100	6.1000	42.0	5.4084	0.0361	27.9035 85.2413	5.978 1.2161	6.582	23.207	153.89 0.6573 0.2259
6.260	6.2600	44.0	5.5503	0.0370	25.5118 -23.2476	6.134 1.2480	7.176	25.300	157.48 0.6555 0.2319
6.415	6.4150	46.0	5.6877	0.0380	24.7146 -7.7492	6.286 1.2789	7.789	27.461	160.96 0.6538 0.2376
6.575	6.5750	48.0	5.8296	0.0389	25.5118 7.7492	6.443 1.3108	8.419	29.684	164.55 0.6521 0.2435
6.725	6.7250	50.0	5.9626	0.0398	23.9173 -15.4984	6.590 1.3407	9.067	31.967	167.92 0.6506 0.2491
6.860	6.8600	52.0	6.0823	0.0406	21.5256 -23.2476	6.722 1.3677	9.730	34.304	170.94 0.6493 0.2541
7.000	7.0000	54.0	6.2064	0.0414	22.3228 7.7492	6.859 1.3956	10.407	36.693	174.09 0.6480 0.2593
7.125	7.1250	56.0	6.3172	0.0422	19.9311 -23.2476	6.982 1.4205	11.098	39.129	176.89 0.6469 0.2639
7.255	7.2550	58.0	6.4325	0.0429	20.7283 7.7492	7.109 1.4464	11.802	41.609	179.81 0.6458 0.2687
7.375	7.3750		6.5389		19.1339 -15.4984				
		60.0		0.0436		7.227 1.4703	12.516	44.127	182.50 0.6448 0.2731
7.480	7.4800	62.0	6.6320	0.0443	16.7421 -23.2476	7.330 1.4913	13.240	46.680	184.86 0.6439 0.2770
7.590	7.5900	64.0	6.7295	0.0449	17.5394 7.7492	7.438 1.5132	13.973	49.264	187.33 0.6431 0.2811
7.695	7.6950	66.0	6.8226	0.0455	16.7421 -7.7492	7.541 1.5341	14.713	51.875	189.24 0.6408 0.2850
7.805	7.8050	68.0	6.9201	0.0462	17.5394 7.7492	7.648 1.5561	15.460	54.508	191.06 0.6378 0.2891
7.910			7.0132						
	7.9100	70.0		0.0468	16.7421 -7.7492	7.751 1.5770	16.213	57.160	192.80 0.6351 0.2930
8.010	8.0100	72.0	7.1019	0.0474	15.9449 -7.7492	7.849 1.5969	16.969	59.826	194.45 0.6325 0.2967
8.080	8.0800	74.0	7.1639	0.0478	11.1614 -46.4953	7.918 1.6109	17.728	62.503	195.61 0.6308 0.2993
8.165	8.1650	76.0	7.2393	0.0483	13.5531 23.2476	8.001 1.6278	18.489	65.187	197.01 0.6287 0.3024
8.270	8.2700	78.0	7.3324	0.0489	16.7421 30.9969	8.104 1.6488	19.251	67.873	198.75 0.6262 0.3063
8.335	8.3350	80.0	7.3900	0.0493	10.3642 -61.9937	8.168 1.6617	20.013	70.559	199.82 0.6247 0.3087
8.385	8.3850	82.0	7.4344	0.0496	7.9724 -23.2476	8.217 1.6717	20.773	73.239	200.65 0.6235 0.3106
8.475	8.4750	84.0	7.5142	0.0501	14.3504 61.9937	8.305 1.6896	21.531	75.911	202.14 0.6215 0.3139
8.500	8.5000	86.0	7.5363	0.0503	3.9862-100.7398	8.329 1.6946	22.285	78.571	202.55 0.6209 0.3148
8.555	8.5550	88.0	7.5851	0.0506	8.7697 46.4953	8.383 1.7056	23.035	81.215	203.46 0.6197 0.3169
8.600	8.6000	90.0	7.6250	0.0509	7.1752 -15.4984	8.427 1.7146	23.780	83.841	204.20 0.6187 0.3185
8.645	8.6450	92.0	7.6649	0.0512	7.1752 0.0000	8.471 1.7235	24.519	86.445	204.95 0.6177 0.3202
8.685	8.6850	94.0	7.7003	0.0514	6.3780 -7.7492	8.511 1.7315	25.250	89.023	205.61 0.6168 0.3217
8.720	8.7200	96.0	7.7314	0.0516	5.5807 -7.7492	8.545 1.7385	25.973	91.574	206.19 0.6161 0.3230
8.745	8.7450	98.0	7.7535	0.0517	3.9862 -15.4984		26.688	94.093	206.60 0.6156 0.3239
8.765	8.7650	100.0	7.7713	0.0519	3.1890 -7.7492	8.589 1.7475	27.393	96.578	206.93 0.6151 0.3246
8.785	8.7850	102.0	7.7890	0.0520	3.1890 0.0000	8.609 1.7514	28.087	99.027	207.26 0.6147 0.3254
8.795	8.7950	104.0	7.7979	0.0520	1.5945 -15.4984	8.618 1.7534	28.771	101.437	207.43 0.6145 0.3257
8.805	8.8050	106.0	7.8067	0.0521	1.5945 0.0000	8.628 1.7554	29.443	103.805	207.59 0.6143 0.3261
8.805	8.8050	108.0	7.8067	0.0521	0.0000 -15.4984	8,628 1,7554	30.102	106.130	207.59 0.6143 0.3261
8.800	8.8000	110.0	7.8023	0.0521	-0.7972 -7.7492	8.623 1.7544	30.748	108.409	207.51 0.6144 0.3259
8.790	8.7900	112.0	7.7934	0.0520	-1.5945 -7.7492	8.614 1.7524	31.381	110.640	207.35 0.6146 0.3256
8.780	8.7800	114.0	7.7846	0.0520	-1.5945 0.0000	8.604 1.7505	32.000	112.821	207.18 0.6148 0.3252
8.755	8.7550	116.0	7.7624	0.0518	-3.9862 -23.2476	8.579 1.7455	32.604	114.950	206.77 0.6154 0.3243
8.730	8.7300	118.0	7.7402	0.0517	-3.9862 0.0000	8.555 1.7405	33.193	117.026	206.35 0.6159 0.3233
8.695	8.6950	120.0	7.7092	0.0514	-5.5807 -15.4984	8.520 1.7335	33.766	119.047	205.78 0.6166 0.3220
8.660	8.6600	122.0	7.6782	0.0512	-5.5807 0.0000	8.486 1.7265	34.323	121.012	205.20 0.6174 0.3207
8.620	8.6200	124.0	7.6427	0.0510	-6.3780 -7.7492	8.447 1.7186	34.864	122.919	204.54 0.6182 0.3193
8.575	8.5750	126.0	7.6028	0.0507	-7.1752 -7.7492	8.403 1.7096	35.388	124.767	203.79 0.6192 0.3176
8.530	8.5300	128.0	7.5629	0.0505	-7.1752 0.0000	8.359 1.7006	35.896	126.556	203.05 0.6202 0.3159
8.480	8.4800	130.0	7.5186	0.0502	-7.9724 -7.7492	8.310 1.6906	36.385	128.282	202.22 0.6213 0.3141
8.425			7.4698	0.0499	-8.7697 -7.7492			129.947	201.31 0.6226 0.3120
	8.4250	132.0				8.256 1.6797	36.858		
8.360	8.3600	134.0	7.4122		-10.3642 -15.4984		37.312	131.549	200.24 0.6241 0.3096
8.285	8.2850	136.0	7.3457	0.0490	-11.9587 -15.4984	8.119 1.6518	37.748	133.087	199.00 0.6258 0.3069
8.215	8.2150	138.0	7.2836	0.0486	-11.1614 7.7492	8.050 1.6378	38.166	134.560	197.84 0.6275 0.3043
8.130	8.1300	140.0	7.2083		-13.5531 -23.2476	7.967 1.6209	38.565	135.968	196.43 0.6295 0.3011
8.035	8.0350	142.0	7.1240		-15.1476 -15.4984	7.874 1.6019	38.946	137.310	194.86 0.6319 0.2976
7.960	7.9600	144.0	7.0575		-11.9587 30.9969	7.800 1.5870	39.308	138.586	193.62 0.6338 0.2948
7.865	7.8650	146.0	6.9733	0.0465	-15.1476 -30.9969	7.707 1.5680	39.651	139.795	192.05 0.6362 0.2913
7.775	7.7750	148.0	6.8935	0.0460	-14.3504 7.7492	7.619 1.5501	39.974	140.936	190.56 0.6386 0.2880
7.680	7.6800	150.0			-15.1476 -7.7492		40.279	142.010	188.99 0.6412 0.2844
7.570	7.5700	152.0	6.7118		-17.5394 -23.2476	7.418 1.5092	40.564		186.88 0.6432 0.2804
								143.016	
7.460	7.4600	154.0			-17.5394 0.0000	7.310 1.4873		143.953	184.41 0.6441 0.2763
7.370	7.3700	156.0	6.5344	0.0436	-14.3504 30.9969	7.222 1.4693	41.077	144.822	182.39 0.6448 0.2730
7.235	7.2350	158.0	6.4147	0.0428	-21.5256 -69.7429	7.090 1.4424	41.303	145.622	179.36 0.6459 0.2680

- 100		1.60.0	c		10 0000		C 000 1 1100			
7.120	7.1200	160.0	6.3128			30.9969	6.977 1.4195	41.511	146.353	176.78 0.6469 0.2637
7.000 6.875	7.0000 6.8750	162.0 164.0	6.2064 6.0956		-19.1339 -19.9311	-7.7492 -7.7492	6.859 1.3956 6.737 1.3707	41.699 41.867	147.015 147.608	174.09 0.6480 0.2593 171.28 0.6491 0.2546
6.730	6.7300	164.0	5.9670		-23.1201		6.595 1.3417	41.007	147.000	168.03 0.6505 0.2493
6.600	6.6000	168.0	5.8517		-20.7283	23.2476	6.468 1.3158	42.144	148.584	165.11 0.6518 0.2444
6.490	6.4900	170.0	5.7542		-17.5394	30.9969	6.360 1.2939	42.252	148.968	162.64 0.6530 0.2404
6.320	6.3200	172.0	5.6035		-27.1063		6.193 1.2600	42.342	149.282	158.83 0.6548 0.2341
6.200	6.2000	174.0	5.4971		-19.1339	77.4921	6.076 1.2361	42.411	149.527	156.13 0.6562 0.2296
6.025	6.0250	176.0	5.3419		-27.9035		5.904 1.2012	42.460	149.701	152.21 0.6582 0.2231
5.875	5.8750	178.0	5.2089	0.0348	-23.9173	38.7461	5.757 1.1713	42.490	149.806	148.84 0.6601 0.2176
5.715	5.7150	BDC	5.0671	0.0338	-25.5118	-15.4984	5.600 1.1394	42.500	149.841	145.25 0.6622 0.2117
5.565	5.5650	182.0	4.9341	0.0329	-23.9173	15.4984	5.453 1.1095	42.490	149.806	141.88 0.6643 0.2061
5.405	5.4050	184.0	4.7922	0.0320	-25.5118	-15.4984	5.296 1.0776	42.460	149.701	138.29 0.6667 0.2002
5.240	5.2400	186.0	4.6459		-26.3091	-7.7492	5.135 1.0447	42.411	149.527	134.59 0.6692 0.1941
5.080	5.0800	188.0	4.5041		-25.5118	7.7492	4.978 1.0128	42.342	149.282	131.00 0.6719 0.1881
4.900	4.9000	190.0	4.3445		-28.7008		4.802 0.9769	42.252	148.968	125.26 0.6661 0.1815
4.725	4.7250	192.0	4.1893		-27.9035	7.7492	4.630 0.9420	42.144	148.584	119.68 0.6600 0.1750
4.525	4.5250	194.0	4.0120		-31.8898		4.434 0.9021	42.015	148.131	113.30 0.6524 0.1676
4.360	4.3600	196.0	3.8657		-26.3091		4.272 0.8692	41.867	147.608	108.04 0.6456 0.1615
4.155	4.1550	198.0	3.6839		-32.6870		4.072 0.8284	41.699	147.015	101.50 0.6365 0.1539
3.980 3.790	3.9800 3.7900	200.0	3.5288 3.3603		-27.9035		3.900 0.7935 3.714 0.7556	41.511	146.353	95.92 0.6280 0.1474 89.86 0.6178 0.1404
3.605	3.6050	202.0 204.0	3.1963		-29.4980	7.7492	3.533 0.7187	41.303 41.077	145.622 144.822	83.96 0.6068 0.1335
3.375	3.3750	204.0	2.9924		-36.6732		3.307 0.6729	40.830	143.953	76.63 0.5916 0.1250
3.175	3.1750	208.0	2.8150		-31.8898	46.4953	3.111 0.6330	40.564	143.016	70.25 0.5765 0.1176
3.000	3.0000	210.0	2.6599		-27.9035	38.7461	2.940 0.5981	40.279	142.010	64.67 0.5617 0.1111
2.790	2.7900	212.0	2.4737		-33.4843		2.734 0.5562	39.974	140.936	57.97 0.5414 0.1033
2.615	2.6150	214.0	2.3185		-27.9035		2.563 0.5213	39.651	139.795	52.39 0.5220 0.0969
2.400	2.4000	216.0	2.1279		-34.2815		2.352 0.4785	39.308	138.586	47.24 0.5129 0.0889
2.200	2.2000	218.0	1.9506	0.0130	-31.8898	23.2476	2.156 0.4386	38.946	137.310	43.31 0.5129 0.0815
2.020	2.0200	220.0	1.7910	0.0120	-28.7008	30.9969	1.979 0.4027	38.565	135.968	39.76 0.5129 0.0748
1.785	1.7850	222.0	1.5826	0.0106	-37.4705	-85.2413	1.749 0.3559	38.166	134.560	35.14 0.5129 0.0661
1.615	1.6150	224.0	1.4319	0.0096	-27.1063	100.7398	1.583 0.3220	37.748	133.087	31.79 0.5129 0.0598
1.450	1.4500	226.0	1.2856		-26.3091	7.7492	1.421 0.2891	37.312	131.549	28.54 0.5129 0.0537
1.305	1.3050	228.0	1.1570		-23.1201	30.9969	1.279 0.2602	36.858	129.947	25.69 0.5129 0.0483
1.135	1.1350	230.0	1.0063		-27.1063		1.112 0.2263	36.385	128.282	22.34 0.5129 0.0420
1.005	1.0050	232.0	0.8911		-20.7283	61.9937	.985 0.2004	35.896	126.556	19.78 0.5129 0.0372
.900	0.9000	234.0	0.7980		-16.7421	38.7461	.882 0.1794	35.388	124.767	17.72 0.5129 0.0333
.755	0.7550	236.0	0.6694		-23.1201		.740 0.1505	34.864	122.919	14.86 0.5129 0.0280
.645 .525	0.6450 0.5250	238.0 240.0	0.5719 0.4655		-17.5394 -19.1339	54.2445	.632 0.1286 .514 0.1047	34.323 33.766	121.012 119.047	12.70 0.5129 0.0239 10.33 0.5129 0.0194
.450	0.4500	240.0	0.3990		-11.9587	69.7429	.441 0.0897	33.193	117.026	8.86 0.5129 0.0167
.375	0.3750	242.0	0.3325		-11.9587	0.0000	.367 0.0748	32.604	114.950	7.38 0.5129 0.0139
.325	0.3250	246.0	0.2882	0.0019	-7.9724	38.7461	.318 0.0648	32.000	112.821	6.40 0.5129 0.0120
.270	0.2700	248.0	0.2394	0.0016	-8.7697	-7.7492	.265 0.0538	31.381	110.640	5.31 0.5129 0.0100
.235	0.2350	250.0	0.2084	0.0014	-5.5807	30.9969	.230 0.0469	30.748	108.409	4.63 0.5129 0.0087
.205	0.2050	252.0	0.1818	0.0012	-4.7835	7.7492	.201 0.0409	30.102	106.130	4.04 0.5129 0.0076
.185	0.1850	254.0	0.1640	0.0011	-3.1890	15.4984	.181 0.0369	29.443	103.805	3.64 0.5129 0.0069
.170	0.1700	256.0	0.1507	0.0010	-2.3917	7.7492	.167 0.0339		101.437	3.35 0.5129 0.0063
.155	0.1550	258.0	0.1374	0.0009	-2.3917	0.0000	.152 0.0309	28.087	99.027	3.05 0.5129 0.0057
.140	0.1400	260.0	0.1241	0.0008	-2.3917	0.0000	.137 0.0279	27.393	96.578	2.76 0.5129 0.0052
.130	0.1300	262.0	0.1153	0.0008	-1.5945	7.7492	.127 0.0259	26.688	94.093	2.56 0.5129 0.0048
.120	0.1200	264.0	0.1064	0.0007	-1.5945	0.0000	.118 0.0239	25.973	91.574	2.36 0.5129 0.0044
.110	0.1100	266.0	0.0975	0.0007	-1.5945	0.0000	.108 0.0219	25.250	89.023	2.17 0.5129 0.0041
.100	0.1000	268.0	0.0887	0.0006	-1.5945	0.0000	.098 0.0199	24.519	86.445	1.97 0.5129 0.0037
.085	0.0850	270.0	0.0754	0.0005	-2.3917	-7.7492	.083 0.0169	23.780	83.841	1.67 0.5129 0.0031
.075 .065	0.0750 0.0650	272.0 274.0	0.0665 0.0576	0.0004	-1.5945 -1.5945	7.7492 0.0000	.073 0.0150 .064 0.0130	23.035 22.285	81.215 78 571	1.48 0.5129 0.0028 1.28 0.5129 0.0024
.065	0.0650	274.0 276.0	0.0576	0.0004	-1.5945	-7.7492	.049 0.0130	22.285	78.571 75.911	.98 0.5129 0.0024
.030	0.0300	278.0	0.0443	0.0003	-1.5945	7.7492	.039 0.0080	20.773	73.239	.79 0.5129 0.0015
.040	0.0300	280.0	0.0355	0.0002	-1.5945	0.0000	.029 0.0060	20.013	70.559	.59 0.5129 0.0011
.020	0.0200	282.0	0.0177	0.0001	-1.5945	0.0000	.020 0.0040	19.251	67.873	.39 0.5129 0.0007
.010	0.0100	284.0	0.0089	0.0001	-1.5945	0.0000	.010 0.0020	18.489	65.187	.20 0.5129 0.0004
.008	0.0080	286.0	0.0071	0.0000	-0.3189	12.3987	.008 0.0016	17.728	62.503	.16 0.5129 0.0003
.005	0.0050	288.0	0.0044	0.0000	-0.4783	-1.5498	.005 0.0010	16.969	59.826	.10 0.5129 0.0002
.000	0.0000	290.0			-0.7972	-3.0997				
.000	0.0000	292.0			0.0000	7.7492				
Totals		6	55.7553	4.3763						35926
								Theor	etical Cu	rcle VE = 1.16414

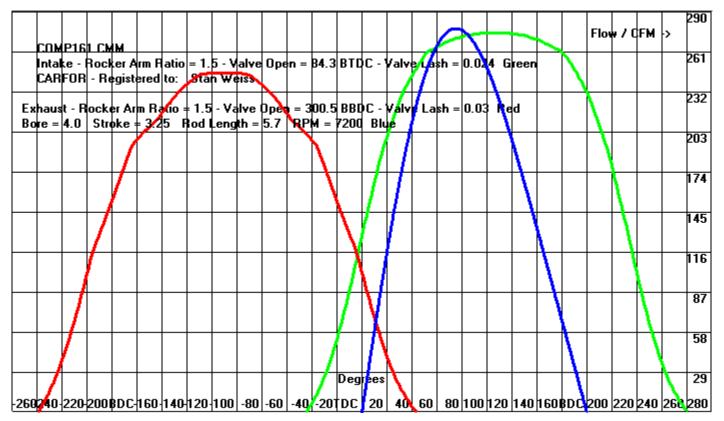
35926 Theoretical Cycle VE = 1.16414

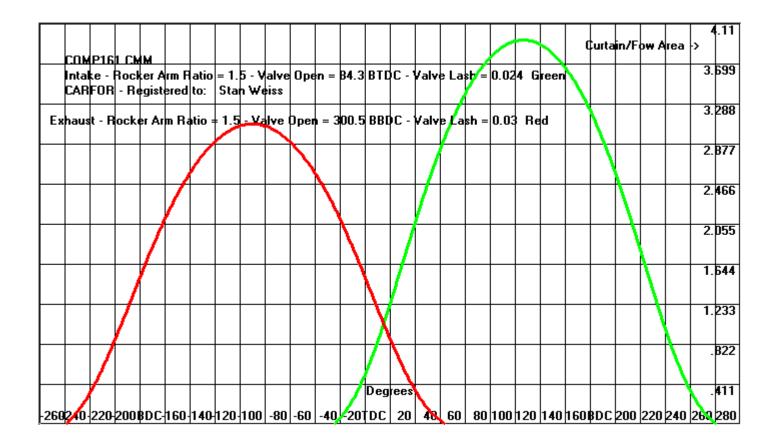
Intake BTDC (IVO to TDC) = 16.939 Intake Pumping (TDC to BDC) = 559.722 Intake Ramming (BDC to IVC) = 86.051 Intake Overlap (IVO to EVC) = 126.021

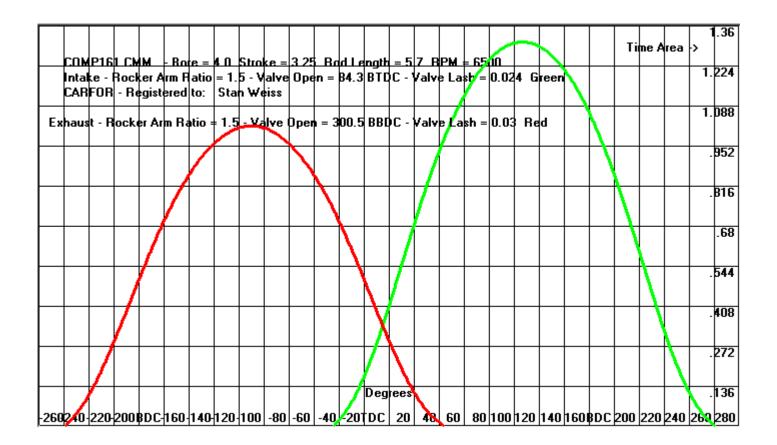
VALVE	Lift	Opens	Closes	Duration	
		Deg BTDC	Deg ABDC		Area
	0.00000	70.00	110.00	360.00	748.41
	0.25000	33.00	69.14	282.14	744.09
	0.50000	22.31	60.67	262.97	740.66
	1.00000	13.68	52.10	245.78	733.73

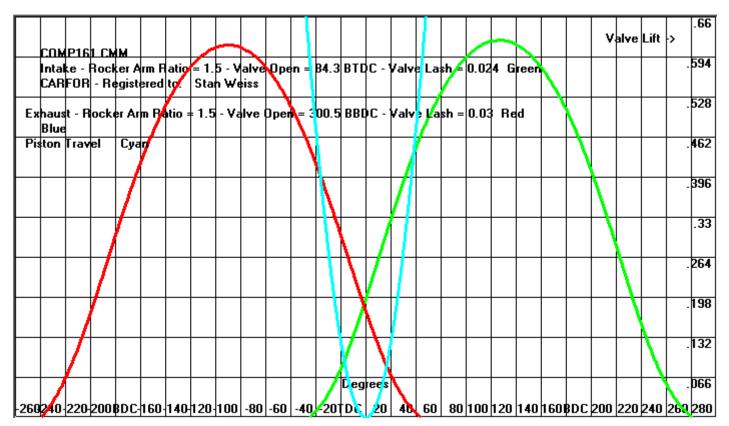

1.00000	13.68	52.10	245.78	733.73
1.50000	7.87	45.39	233.26	724.18
2.50000	-3.63	35.07	211.44	703.09
3.00000	-8.67	30.00	201.33	689.20
3.50000	-13.52	24.91	191.39	672.47
4.00000	-18.82	19.77	180.95	649.35
4.50000	-23.40	14.30	170.90	632.01
5.00000	-28.86	8.89	160.03	603.09
5.50000	-34.88	2.81	147.93	571.10
6.00000	-40.86	-3.67	135.48	536.17
6.50000	-47.06	-10.18	122.76	491.74
7.00000	-54.00	-18.00	108.00	451.00
7.50000	-62.36	-26.73	90.91	378.03
8.00000	-71.80	-37.07	71.13	307.70
8.50000	-86.00	-50.80	43.20	191.59
0.25000	33.00	69.14	282.14	744.09
0.50000	22.31	60.67	262.97	740.66
1.00000	13.68	52.10	245.78	733.73
1.00000	13.68	52.10	245.78	733.73
1.50000	7.87	45.39	233.26	724.18
2.50000	-3.63	35.07	211.44	703.09
3.00000	-8.67	30.00	201.33	689.20
3.50000	-13.52	24.91	191.39	672.47
4.00000	-18.82	19.77	180.95	649.35
4.50000	-23.40	14.30	170.90	632.01
5.00000	-28.86	8.89	160.03	603.09
5.50000	-34.88	2.81	147.93	571.10
6.00000	-40.86	-3.67	135.48	536.17
6.50000	-47.06	-10.18	122.76	491.74
7.00000	-54.00	-18.00	108.00	451.00
7.50000	-62.36	-26.73	90.91	378.03
8.00000	-71.80	-37.07	71.13	307.70
8.50000	-86.00	-50.80	43.20	191.59

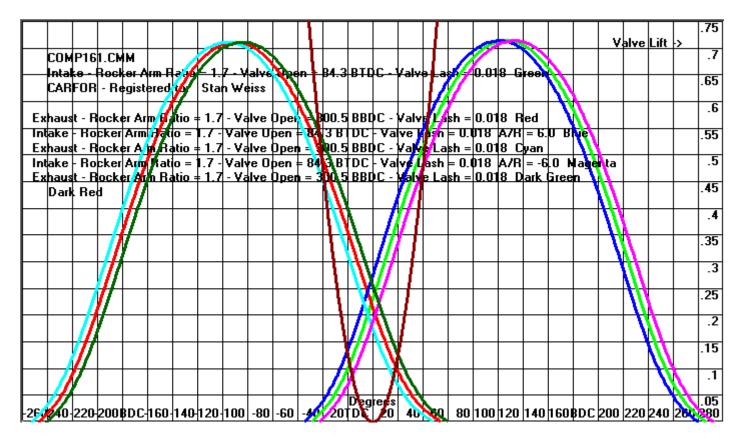
Intake BTDC (IVO to TDC) = 4.559
Intake Pumping (TDC to BDC) = 106.103
Intake Ramming (BDC to IVC) = 15.992
Intake Overlap (IVO to EVC) = 5.572


Added Version 4.0.0


Using Valve Seat Angle and Width for Area Calculation Intake BTDC (IVO to TDC) = 3.248 Intake Pumping (TDC to BDC) = 93.378 Intake Ramming (BDC to IVC) = 12.677 Intake Overlap (IVO to EVC) = 4.036


CAM

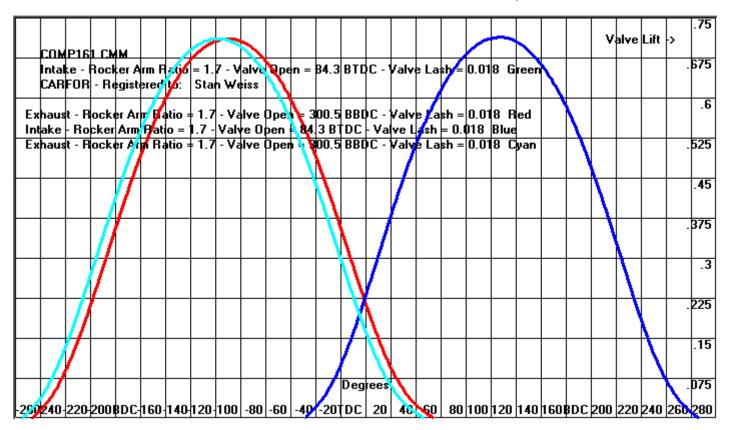

Cylinder head flow against Cam Valve Lift and Piston Flow CFM (Magenta)


Valve Lift and Piston Travel

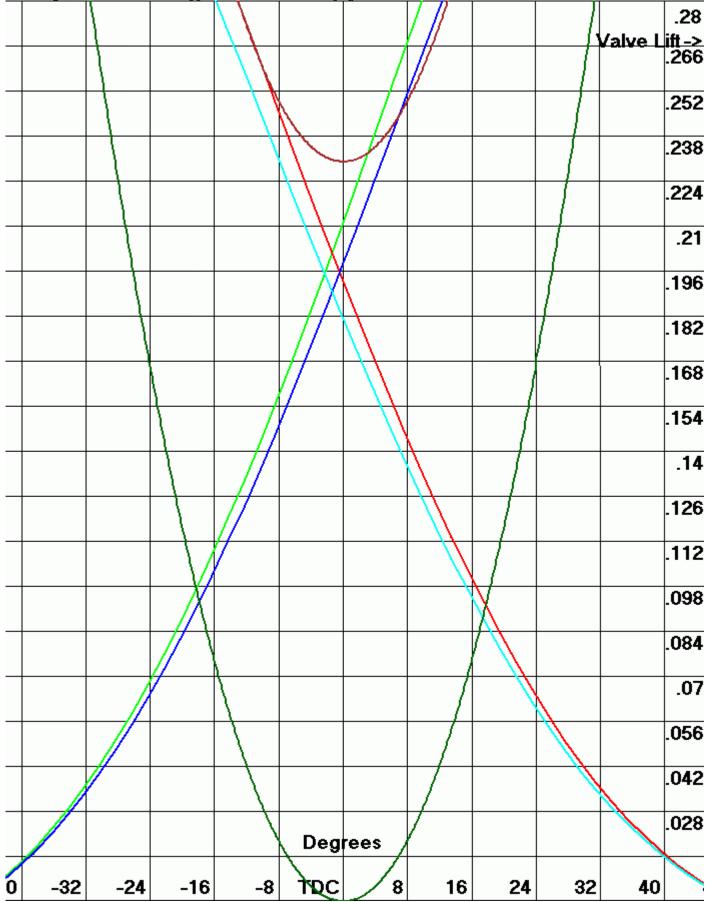
Vertical Valve Lift and Piston Travel Scaled 0.5

	сом	P16	1 CL	-													I						v	alve	Lift	•>	.33
		ke - I	Rocl	ker A						Op	:n =	4.	3 BT	DC -	VAIV	e La	n h =	0.02	4 G	reen						-	297
	haus Blue		ock	er Ar	m Ra	atio =	= 1.5	- Va	lve	Оре	i = 3	00.	BB	DC /	Valv	e Li	sh =	0.03	B Re	d						-	264
	ton		el	Суа	n						T		\mathbf{h}	7		1										-	231
											t		\uparrow	Ć		1										-	198
													7	N		t										-	165
													ſ	+ ۱		-										-	132
												X			X											-	099
											\checkmark	h			1	Ν										-	D66
													Deg	grees	-									-		·	033
130	120·	110-	100	-90	-80	-70	-60	-50	-40	-30	-20	-10	ot de c	10	20	30	40	50	60	70	80	90	100	110	120	130	140

Valve Lift and Piston Travel Plus Cam Advanced 6 degrees and Retarded 6 degrees

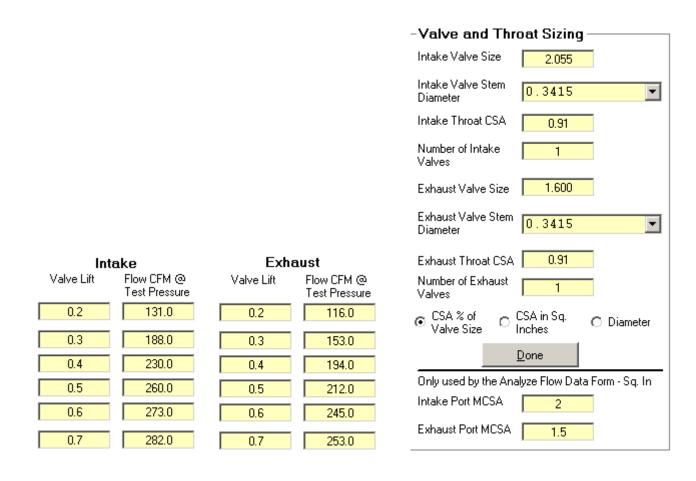


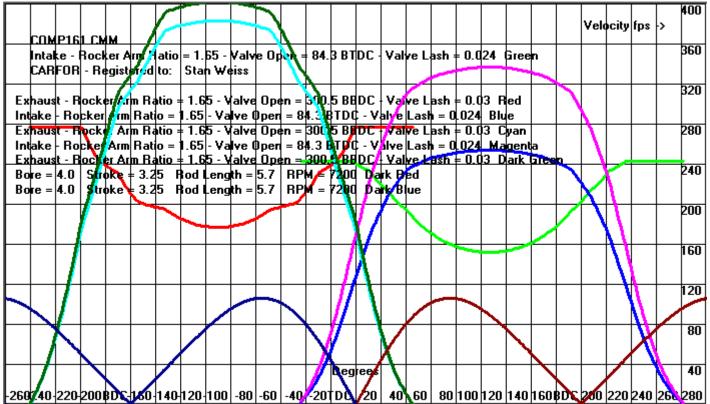
Valve Lift and Piston Travel Plus LSA Increased 4 degrees and LSA Decreased 4 degrees


	COM	P16		MM												Π							v	alve	Lift	•>	.75
	Intal	ke -	Roc	ker A		a'				Pe	n ‡	84 .3	BTC)C - '	Valv	re La		0.01	8 G	ireen							675
						tio = 10 = 1																					.6
Ex	haus ake	t - F - Ra	lock cke	er Ar Arn	Rat	atio = io = ' atio =	1.7 1.7 -	- Va Valv	ilve re O	Oper pen :	= = = 84	00.5 N B	BBI TDC)C - - Va	Val: Ive I	La ash	ash = = 0.	0.01 018	18 C Mag	yan jenta							525
	Darl ton	k Re	d I				<u> </u>	- • •	IIYC I	oheu		N					1511 =	0.0									.45
				ſ								T			Π												375
												T			T									M			.3
												Π			T												225
													V														.15
-26%	40	220	200	BDC	160	140-	120	100	-80	-60	-42	///	1.	rees		C 0	80	100	120	140	160	BDC	200	220	240		075 280

126 - CARFOR Performance Software by Stan Weiss / World Wide Enterprises

Intake and Exhaust Valve Lift Plus LSA Increased by 4 degrees and Cam Advance 4 degrees NOTE that both Intake Lift curves are in the same place




(Intake Green - Exhaust Red) Plus Valve Vertical (Intake Blue - Exhaust Cyan) Plus Piston Travel (Dark Green) and Piston Travel with Valve Clearance @ TDC (Dark Brown). Note how the you can see no intake valve to piston clearance but when using the Exhaust vertical valve lift you have some clearance. This really needs to be done twice, once using the Intake valve clearance @ TDC to check the Intake and the other time using the Exhaust valve clearance @ TDC to check the Exhaust. You can also advance or retard the cam to see what happens to the clearances. While this software produced this image, it has been cropped to fit on this page.

128 - CARFOR Performance Software by Stan Weiss / World Wide Enterprises

This shows Curtain area velocity (Green Intake, Red Exhaust), Throat area velocity (Blue Intake, Cyan Exhaust), Min CSA velocity (Magenta Intake, Dark Green Exhaust) and Piston Velocity (Dark Red Intake, Dark Blue Exhaust).

Air / Fuel / Exhaust Calculato	r		
Air Fuel Flow Details		Port Flow / CSA	
Engine Size 326.7256	Carb Size 650		
RPM 6500	Volumetric Efficiency 0.85		Graph - Max Lift 1.20
Horsepower 555.0	Number of Cylinders 8	C Lift - Exhaust CFM - VE	USER Velocity - fps 280
Blower 0.0	Port Diam 2,25	C Lift - Intake CSA @ 300 fps - VE	ੇ Lift - Intake CSA @ USER fps - VE
Air Fuel Ratio /	Intake	C Lift - Exhaust CSA @ 300 fps - VE 📿	Lift - Exhaust CSA @ USER fps - VE
Lambda Value 12.5	Runner Len 7.55	C Lift - Intake Throat Velocity - VE	alculate Every x.xx"
RPM Max 6500	Peak Torque RPM 5900	C Lift - Exhaust Throat Velocity - VE	
Comp Ratio 13.59405	Alcohol Horsepower 575	C Lift - Intake Choke RPM	Exhaust Logic
Set Lambda Fuel	BSFC .5	C Lift - Exhaust Choke RPM	• Use Old Exhaust Logic
Air Flow Conversion			_
Old Depression 5.0	New 28.0 Depression	C Intake CSA - FPS - Choke RPM - VE	O Use New Exhaust Logic
[⊙ Inch ⊂ mm Water ⊂ Water	New Air Flow 248.475	C Exhaust CSA - FPS - Choke RPM - VE	
Old Air Flow 105.0	Convert Airflow	Colordata Taut Volus Cisian	Crark
⊙ CFM O M^3/s		Calculate - Text Valve Sizing	<u>G</u> raph
	Analyze Flow Data	🔲 Show Dots on Lines 📄 Show Large	Grouping 🔲 Circle 🔲 Lines
Sub Scre	ens Port Time Area		Done

- 4) Calculate Intake and Exhaust Choke RPM, CFM @ 28 Inches, CSA @ 300 fps velocity, and Velocity @ User CSA this uses RPM Max HP, Volumetric Efficiency from left screen.
- 5) Get Valve Size, Valve Stem Size, Throat Information and Number of Valves.
- 6) Graph Intake or Exhaust Choke RPM, CFM @ 28 Inches, CSA @ 300 fps velocity, and Velocity @ User CSA Based on selected Graph Options.

Graph Options:

Intake CFM on Y-Axis, Lift on X-Axis against VE. Exhaust CFM on Y-Axis, Lift on X-Axis against VE. Intake CSA @ 300 fps on Y-Axis, Lift on X-Axis against VE. Exhaust CSA @ 300 fps on Y-Axis, Lift on X-Axis against VE. Intake Velocity on Y-Axis, Lift on X-Axis against VE. Exhaust Velocity on Y-Axis, Lift on X-Axis against VE. Intake Choke RPM on Y-Axis, Lift on X-Axis against VE. Exhaust Choke RPM on Y-Axis, Lift on X-Axis against VE. Intake Choke CSA on Y-Axis, FPS on X-Axis against VE. Exhaust Choke CSA on Y-Axis, FPS on X-Axis against VE. Intake CSA @ USER entered fps on Y-Axis, Lift on X-Axis against VE. Exhaust CSA @ USER entered fps on Y-Axis, Lift on X-Axis against VE.

Graph Max Lift:

Lets the user limit the maximum lift shown on the X-Axis. The lower limit is .3" and the upper limit is 1.5".

Check Boxes:

Show Dots on Lines will place a dot at each 0.025" lift or every 10 fps The Default is to group 3 line over each 0.05 VE higher and 3 lines below each 0.05 VE lower. Show

Large Grouping shows 7 lines above and 7 lines below each 0.05 VE from the last.

Circle will place a small circle whose center is at the point where the x and y coordinates meet.

Line will place a line at the x coordinate which runs threw all the other lines.

Calculate Every x.xx" Lift lets the USER select from 0.100, 0.050, 0.025 0.010, or 0.005 inches of lift, with the default being every .025".

Valve and Throat Sizing	
Intake Valve Size 2,02	Seat Angle 45
Intake Valve Stem Diameter	•
Intake Throat 0.91	Seat .08 Width
Number of Intake <u>1</u> Valves	hiddi
Exhaust Valve 1.60 Size	
Exhaust Valve 0.3415 Stem Diameter	•
Exhaust Throat 0.91	
Number of 1 Exhaust Valves	
● CSA % of CSA in Sq. Valve Size CInches	C Diameter
Done	
Only used by the Analyze Flow	Data Form -
Intake Port MCSA 0.0	
Exhaust Port MCSA 0.0	

For the user to enter CSA in sq. inches check the "CSA in Sq. Inches" button and then enter the sq. inch valve into the "Intake Throat CSA" and "Exhaust Throat CSA" fields.

NOTE: Since the throat area has the valve stem area remove from it, if you want to use this as a **TRUE CSA** set the Intake and Exhaust Valve Stem Diameter to zero.

The last two columns are calculated using the user entered "Velocity – fps". If the user enters 350 these columns will show the Minimum CSA.

Bore = 4.0000Stroke = 3.2500Rod Length = 5.7000RPM = 6500Wrist Pin Offset = 0.0Number of - Intake Valves = 1 - Exhaust Valves = 1 Intake Valve Size = 2.02 Exhaust Valve Size = 1.6 Intake Valve / Bore Ratio = 0.505 Exhaust Valve / Bore Ratio = 0.4Intake Valve Area = 3.204739 sq. in. Exhaust Valve Area = 2.010619 sq. in. Intake Valve Stem Size = 0.3415 Exhaust Valve Stem Size = 0.3415 Intake Valve Stem Area = 0.091595 sq. in. Exhaust Valve Stem Area = 0.091595 sq. in. Valve Lift at which the Valve Area and Window / Curtain Area are the SAME SIZE At that point the velocity will be the same in both areas Intake Valve Lift = 0.505 Inches Exhaust Valve Lift = 0.4 Inches Intake Centerline = 111.0 User Selected DC - Discharge Coefficient = 0.5Throat CSA (0.91) Intake = 2.5622 sq. in. Throat CSA (0.91) Exhaust = 1.5734 sq. in. Effective Throat CSA = 0.89416 Effective Throat CSA = 0.88462 Valve Lift at which the Throat Area and Window / Curtain Area are the SAME SIZE At that point the velocity will be the same in both areas Intake Valve Lift = 0.40376 Inches Exhaust Valve Lift = 0.31302 Inches Crank Angle of Max. Piston Velocity = 75.163 Volumetric Efficiency = 0.85 Choke RPM Minimum Intake Lift = 0.5674 Minimum Exhaust Lift = 0.5344 Maximum Intake Lift = 0.6501 Maximum Exhaust Lift = 0.6123 CSA @ 300 Throat Velocity Valve Minimum CFM @ CSA @ 280 28 Inches Water fps Velocity fps - User CSA fps Velocity Lift Choke RPM L/D Ratio Intake Exhaust Intake Exhaust Intake Exhaust Intake Exhaust Intake Exhaust .025 286 304 7.50 5.61 0.0600 0.0449 7.028 8.552 0.0643 0.0481 0.0124 0.0156 608 15.01 .050 573 11.21 0.1200 0.0897 14.056 17.104 0.1286 0.0961 0.0248 0.0313

16.82 0.1801 0.1346

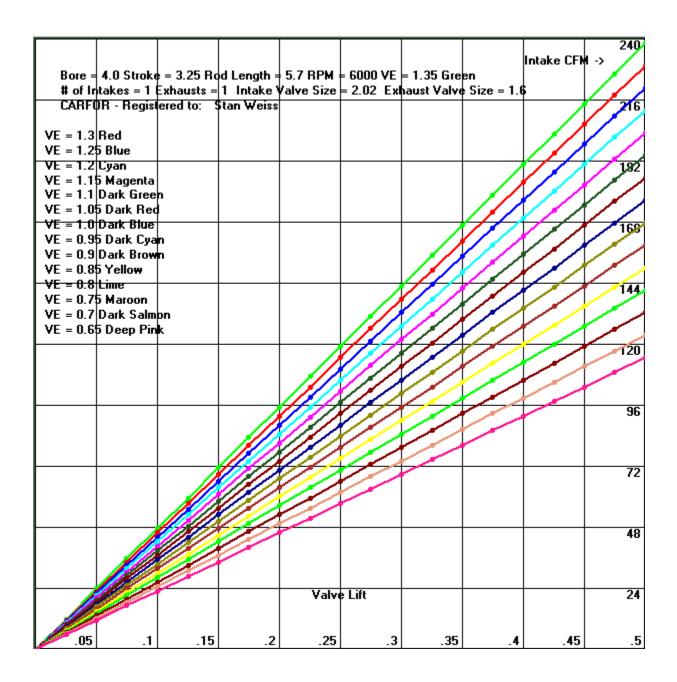
.075

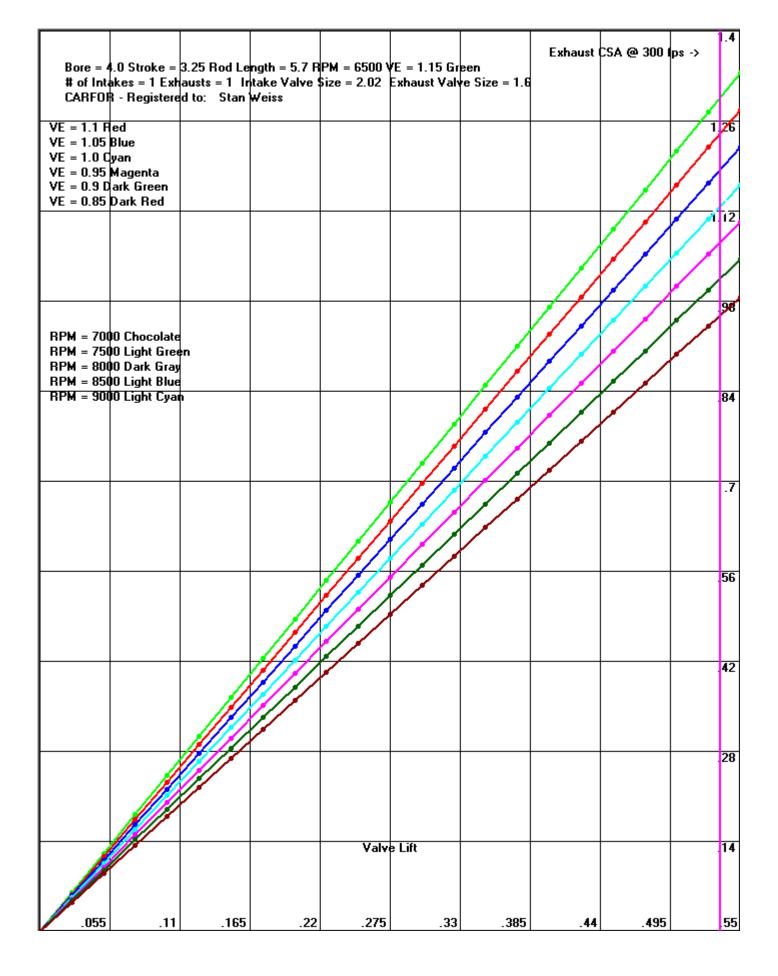
859

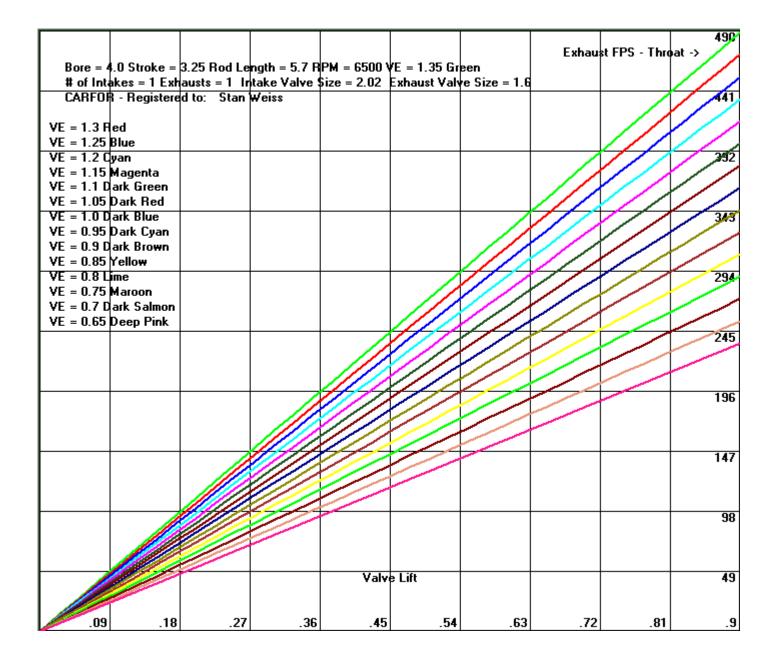
912 22.51

CARFOR Performance Software by Stan Weiss / World Wide Enterprises - 131

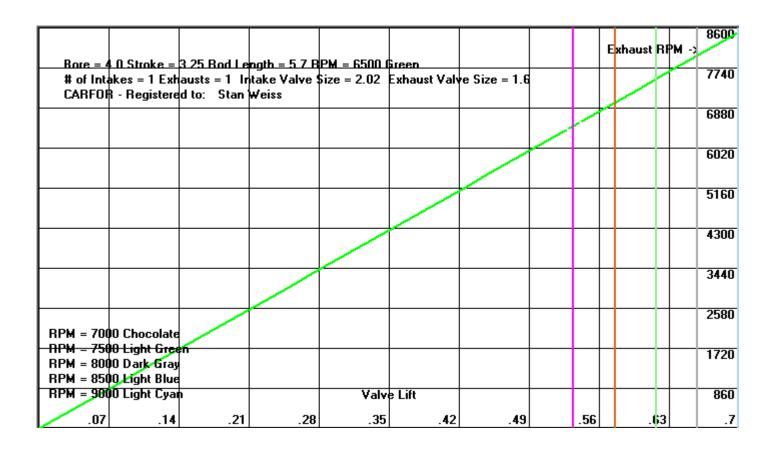
21.083 25.656 0.1929 0.1442 0.0371 0.0469


.100	1146	1216	30.01	22.43	0.2401	0.1794	28.111	34.208	0.2572	0.1922	0.0495	0.0625
.125	1432	1520	37.51	28.03	0.3001	0.2243	35.139	42.759	0.3216	0.2403	0.0619	0.0781
.150	1718	1824	45.02	33.64	0.3601	0.2691	42.167	51.311	0.3859	0.2883	0.0743	0.0938
.175	2005	2128	52.52	39.25	0.4202	0.3140	49.194	59.863	0.4502	0.3364	0.0866	0.1094
.200	2291	2432	60.02	44.85	0.4802	0.3588	56.222	68.415	0.5145	0.3844	0.0990	0.1250
.225	2578	2737	67.53	50.46	0.5402	0.4037	63.250	76.967	0.5788	0.4325	0.1114	0.1406
.250	2864	3041	75.03	56.06	0.6002	0.4485	70.278	85.519	0.6431	0.4806	0.1238	0.1563
.275	3150	3345	82.53	61.67	0.6603	0.4934	77.305	94.071	0.7074	0.5286	0.1361	0.1719
.300	3437	3649	90.03	67.28	0.7203	0.5382	84.333	102.623	0.7717	0.5767	0.1485	0.1875
.325	3723	3953	97.54	72.88	0.7803	0.5831	91.361	111.175	0.8360	0.6247	0.1609	0.2031
.350	4010	4257	105.04	78.49	0.8403	0.6279	98.389	119.726	0.9003	0.6728	0.1733	0.2188
.375	4296	4561	112.54	84.10	0.9003	0.6728	105.416	128.278	0.9647	0.7208	0.1856	0.2344
.400	4582	4865	120.05	89.70	0.9604	0.7176	112.444	136.830	1.0290	0.7689	0.1980	0.2500
.425	4869	5169	127.55	95.31	1.0204	0.7625	119.472	145.382	1.0933	0.8169	0.2104	0.2656
.450	5155	5473	135.05	100.92	1.0804	0.8073	126.500	153.934	1.1576	0.8650	0.2228	0.2813
.475	5442	5777	142.55	106.52	1.1404	0.8522	133.527	162.486	1.2219	0.9131	0.2351	0.2969
.500	5728	6081 6385	150.06	112.13 117.74	1.2005	0.8970	140.555 147.583	171.038	1.2862	0.9611	0.2475 0.2599	0.3125 0.3281
.525	6014 6301	6689	157.56 165.06	123.34	1.2605 1.3205	0.9419 0.9867	154.611	179.590 188.141	1.3505 1.4148	1.0092 1.0572	0.2599	0.3438
.550	6587	6993	172.57	123.34	1.3205	1.0316	161.638	196.693	1.4140	1.1053	0.2723	0.3438
.600	6874	7297	180.07	134.56	1.4405	1.0318	161.638	205.245	1.5434	1.1533	0.2847	0.3394
.625	7160	7601	187.57	140.16	1.5006	1.1213	175.694	203.245	1.6078	1.2014	0.3094	0.3906
.650	7446	7906	195.07	145.77	1.5606	1.1661	182.722	222.349	1.6721	1.2494	0.3218	0.4063
.675	7733	8210	202.58	151.37	1.6206	1.2110	189.749	230.901	1.7364	1.2975	0.3342	0.4219
.700	8019	8514	210.08	156.98	1.6806	1.2558	196.777	239.453	1.8007	1.3456	0.3465	0.4375
.725	8306	8818	217.58	162.59	1.7407	1.3007	203.805	248.005	1.8650	1.3936	0.3589	0.4531
.750	8592	9122	225.09	168.19	1.8007	1.3456	210.833	256.557	1.9293	1.4417	0.3713	0.4688
.775	8878	9426	232.59	173.80	1.8607	1.3904	217.860	265.108	1.9936	1.4897	0.3837	0.4844
.800	9165	9730	240.09	179.41	1.9207	1.4353	224.888	273.660	2.0579	1.5378	0.3960	0.5000
.825	9451	10034	247.59	185.01	1.9808	1.4801	231.916	282.212	2.1222	1.5858	0.4084	0.5156
.850	9737	10338	255.10	190.62	2.0408	1.5250	238.944	290.764	2.1865	1.6339	0.4208	0.5313
.875	10024	10642	262.60	196.23	2.1008	1.5698	245.971	299.316	2.2509	1.6819	0.4332	0.5469
.900	10310	10946	270.10	201.83	2.1608	1.6147	252.999	307.868	2.3152	1.7300	0.4455	0.5625
.925	10597	11250	277.61	207.44	2.2208	1.6595	260.027	316.420	2.3795	1.7781	0.4579	0.5781
.950	10883	11554	285.11	213.05	2.2809	1.7044	267.055	324.972	2.4438	1.8261	0.4703	0.5938
.975	11169	11858	292.61	218.65	2.3409	1.7492	274.082	333.524	2.5081	1.8742	0.4827	0.6094
1.000	11456	12162	300.11	224.26	2.4009	1.7941	281.110	342.075	2.5724	1.9222	0.4950	0.6250
1.025	11742	12466	307.62	229.87	2.4609	1.8389	288.138	350.627	2.6367	1.9703	0.5074	0.6406
1.050	12029	12771	315.12	235.47	2.5210	1.8838	295.166	359.179	2.7010	2.0183	0.5198	0.6563
1.075	12315	13075	322.62	241.08	2.5810	1.9286	302.193	367.731	2.7653	2.0664	0.5322	0.6719
1.100	12601	13379	330.13	246.68	2.6410	1.9735	309.221	376.283	2.8296	2.1144	0.5446	0.6875
1.125	12888	13683	337.63	252.29	2.7010	2.0183	316.249	384.835	2.8940	2.1625	0.5569	0.7031
1.150	13174	13987	345.13	257.90	2.7611	2.0632	323.277	393.387	2.9583	2.2106	0.5693	0.7188
1.175	13461	14291	352.63	263.50	2.8211	2.1080	330.304	401.939	3.0226	2.2586	0.5817	0.7344
1.200	13747	14595	360.14	269.11	2.8811	2.1529	337.332	410.490	3.0869	2.3067	0.5941	0.7500
1.225	14033	14899	367.64	274.72	2.9411	2.1977	344.360	419.042	3.1512	2.3547	0.6064	0.7656
1.250	14320	15203	375.14	280.32	3.0011	2.2426	351.388	427.594	3.2155	2.4028	0.6188	0.7813
1.275	14606	15507	382.65	285.93	3.0612	2.2874	358.415	436.146	3.2798	2.4508	0.6312	0.7969
1.300	14893	15811	390.15	291.54	3.1212	2.3323	365.443	444.698	3.3441	2.4989	0.6436	0.8125
1.325	15179	16115	397.65					453.250				
1.350	15465	16419	405.15	302.75	3.2412	2.4220	379.499		3.4728	2.5950	0.6683	0.8437
1.375	15752	16723	412.66	308.36	3.3013	2.4668	386.527				0.6807	0.8594
1.400	16038	17027	420.16	313.96	3.3613	2.5117	393.554		3.6014		0.6931	0.8750
1.425	16325	17331	427.66	319.57	3.4213		400.582		3.6657		0.7054	0.8906
1.450	16611	17635	435.17	325.18	3.4813		407.610		3.7300	2.7872	0.7178	0.9062
1.475	16897	17940 18244	442.67	330.78	3.5413			504.561		2.8353	0.7302 0.7426	0.9219 0.9375
1.500	17184	10244	450.17	336.39	3.6014	2.6911	421.665	513.113	3.8586	2.8833	0./420	0.93/5


Vel	CSA Sq. In.	CSA Sq. In.
FPS	Intake	Exhaust
200	2.0434	1.4382
205	1.9936	1.4031
210	1.9461	1.3697
215	1.9008	1.3379
220	1.8576	1.3075
225	1.8164	1.2784
230	1.7769	1.2506
235	1.7391	1.2240
240	1.7028	1.1985
245	1.6681	1.1741
250	1.6347	1.1506
255	1.6027	1.1280
260	1.5718	1.1063
265	1.5422	1.0854
270	1.5136	1.0653
275	1.4861	1.0460
280	1.4596	1.0273
285	1.4340	1.0093
290	1.4092	0.9919


295	1.3854	0.9751
300	1.3623	0.9588
305	1.3399	0.9431
310	1.3183	0.9279
315	1.2974	0.9132
320	1.2771	0.8989
325	1.2575	0.8851
330	1.2384	0.8716
335	1.2199	0.8586
340	1.2020	0.8460
345	1.1846	0.8338
350	1.1677	0.8218

	Intake	Exhaust
Choke	Valve	Valve
RPM	Lift	Lift
500	0.0436	0.0411
750	0.0655	0.0617
1000	0.0873	0.0822
1250	0.1091	0.1028
1500	0.1309	0.1233
1750	0.1528	0.1439
2000	0.1746	0.1644
2250	0.1964	0.1850
2500	0.2182	0.2056
2750	0.2401	0.2261
3000	0.2619	0.2467
3250	0.2837	0.2672
3500	0.3055	0.2878
3750	0.3273	0.3083
4000	0.3492	0.3289
4250	0.3710	0.3494
4500	0.3928	0.3700
4750	0.4146	0.3905
5000	0.4365	0.4111
5250	0.4583	0.4317
5500	0.4801	0.4522
5750	0.5019	0.4728
6000 6250	0.5237	0.4933 0.5139
6250 6500	0.5456 0.5674	0.5139
6750	0.5892	0.5550
7000	0.5892	0.5755
7250	0.6329	0.5961
7500	0.6547	0.6167
7750	0.6765	0.6372
8000	0.6983	0.6578
8250	0.7202	0.6783
8500	0.7420	0.6989
8750	0.7638	0.7194
9000	0.7856	0.7400
9250	0.8074	0.7605
9500	0.8293	0.7811
9750	0.8511	0.8017
10000	0.8729	0.8222
10250	0.8947	0.8428
10500	0.9166 0.9384	0.8633 0.8839
10750 11000	0.9384	0.8839
11250	0.9820	0.9011
11500	1.0039	0.9455
11750	1.0257	0.9661
12000	1.0475	0.9866
12250	1.0693	1.0072
12500	1.0911	1.0278
12750	1.1130	1.0483
13000	1.1348	1.0689
13250	1.1566	1.0894
13500	1.1784	1.1100
13750	1.2003	1.1305
14000	1.2221	1.1511
14250	1.2439	1.1716
14500	1.2657	1.1922
14750	1.2875	1.2128
15000	1.3094	1.2333
15250	1.3312	1.2539
15500 15750	1.3530 1.3748	1.2744
15750 16000	1.3748	1.2950 1.3155
10000	1.390/	T. J.

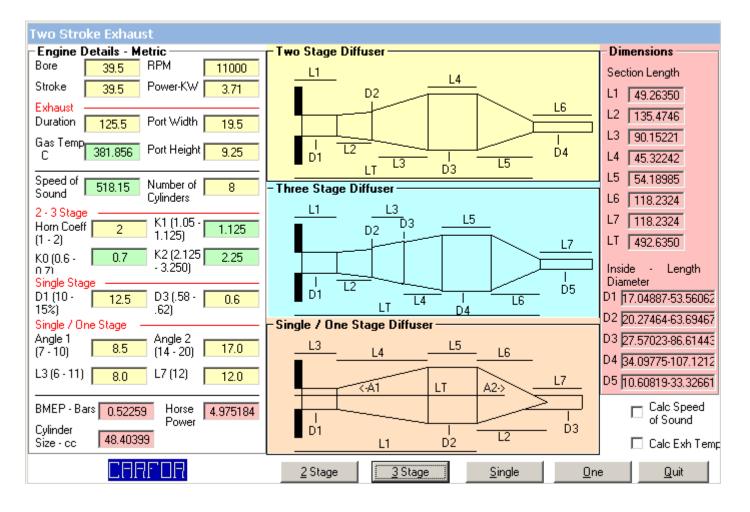

16250	1.4185	1.3361
16500	1.4403	1.3566
16750	1.4621	1.3772
17000	1.4840	1.3978
17250	1.5058	1.4183
17500	1.5276	1.4389
17750	1.5494	1.4594
18000	1.5712	1.4800

								Intake RF	13809
Rore = 4	0 Stroke =	3 25 Rod I e	ngth = 5 7 B	PM = 6500 (Green			miake ni	
# of Inte	nkes = 1 Exh	austs = 1 Ir	take Valve S			re Size = 1.6			12420
CARFOR	l - Registere	d to: Stan	Weiss						
									11040
									9660
									8280
									6900
									5520
									4140
									2760
									2100
				Valv	e Lift				1380
.12	.24	.36	.48	.6	.72	.84	.96	1.08	1.2

														2
														2
												Exhau	st CSA 👌	>
Bore	e = 4.0 S	troke =	3.25 Ro	d Lengtł) = 5.7 R	PM = 65	00 VE =	1.2 Gre	en					
ii ol	Intakes	= 1 Exh	austs =	1 Intak	e Valve S	\$ize = 2.	02 Exh	aust Valv	e Size =	1.6				
		egistere												1.85
0			u											1.00
VE I	15.0													
	15 Red													
	.1 Blue													
V E = 1	. 0 5 Cya													1.7
VE = 1	.0 Mage	nta										•		
VE = 0	95 Darl	Green												
VE = 0	.9 Dark	Red												
	.85 Darl													1.55
														1.55
	.8 Dark													
		k Brown												
¥E = 0	.7 Yello	w 🔪												
VE = 8	65 Lim													1.4
$\mathbf{W}\mathbf{F} = 0$.6 Maro	hn												
		Salmor												
									-					
$\mathbf{YE} = \mathbf{U}$.5 Deep	Pink 🕆									<u> </u>			
														1.25
										-				
								-			-			-
												_		
						~								T.4-
						-								
~														-
					_		-	-						.95
													└──┥	
														~
	-		-						_					
	-													.8
	-													
						· · ·								
														_
				_			FPS							.65
											_			.03
													┍╼╼╼┥	
220	230	240	250	260	270	280	290	300	310	320	330	340	350	300

Two Stroke Exhaust, Expansion Chamber/Diffuser Design

Note: All input and output on this screen is in Metric units only.


- This will let you calculate the dimensions of a single, one, two, or three stage expansion chamber / diffuser exhaust systems for your two stroke engine. Based on which command is selected unused output cells will be grayed out when the results are displayed.
- Some of the main parameters in exhaust design are exhaust duration, the effective exhaust port diameter (calculated from exhaust width and height as a basic rectangle), engine RPM, and the speed of sound, and the variable that causes changes in the speed of sound which is Exhaust Gas Temperature. The user can enter each of these or check either or both check boxes and have the program calculate these values for you.
- The LT value is calculated from the piston face.

These constants will let you customize the calculations. For these you have 3 choices.

- 1) Use the default values in the program.
- 2) Enter the values you want to use.
- 3) Have the program calculate the values for you. This only works for exhaust gas temperature, Horn Coefficient, K0, K1 and K2. To do this the program needs to calculate BMEP using cylinder capacity, power in KW, and RPM's.

Constant Value based on Engine Type:	Exhaust Temp	KO	K1	K2
Road Bike	375	0.70	1.125	2.0
Enduro	500	0.7	1.125	2.25
Motocross	600	0.65	1.0875	2.75
Grand Prix Racer	650	0.6	1.05	3.25

Lower **K1** and **K2** numbers will give you a boarder power band and higher numbers for a higher / very narrow RPM range. The **Horn Coefficient** works with smaller values for narrow power band and larger values are for a boarder power band.

Angle A1 normally is between 7 to 10 degrees, while angle A2 is normally set to twice A1 or between 14 to 20 degrees.

Single Stage Diffuser is based on the book "2-Stroke Tuner's Handbook" by Gordon Jennings. Two and Three Stage Diffusers are based on the book "Design and Simulation of Two Stroke Engines" by Dr. Gordon P. Blair.

Rear / Tire D			PM - After	- MPH in Gear -			Overall Ratio	Speed (MPH)
MPH	192.453	1-2	5777		.3.25	3.25	14.7	RPM
RPM Peak Torque	6500	2-3	5777	2nd Gear 2	3.25	2.25	12.6	
RPM	5900	3-4	5777	3rd Gear 3	3.25	1.25	10.5	<u>F</u> irst Gear M
Horsepower	555.0	4 - 5	5777	4th Gear 4	3.25	1.0	8.4	First Gear Aut
Tire Diameter	24.0	5 - 6	5777	5th Gear 5	3.25	0.87	6.3	Shi <u>f</u> t RPM
Tire Width	195.0	6 - 7	5777	6th Gear 6	3.25	0.0	4.2	RPM After
Tire Radius	12.0	7-8	5777	7th Gear 7	3.25	0.0	2.1	Gear Ratio
Final Drive — Pinion Gear	10	8-9	5777		3.25	0.0	1.5	Gear Ratio
Ring Gear		9 - 10	5777	9th Gear 9	3.25	0.0	1.2	_
Rear Gear	41			10th Gear 10	3.25	0.0	1.0	Gear RP <u>M</u>
Ratio	4.1	New Tire Diameter	29.75	Track Size	1.366	Skid Pad G's	1 1 54221	Gear <u>T</u> ire
New Rear Gear Ratio	4.56	Wheel	16.0	Track / Lap Time	29.56	Lateral Ace		Tire Diam
Effective Rear	3.96	Diameter		% Converter	29.30	Turn Radius		
Ratio	0.50	Aspect Ratio	75.0	Slippage	11.34	Front Sprod		New Tire Di <u>a</u> m
Speedometer Error	101.5	New RPM	6666	Trans Drop	81.25	Rear Sprock	at	Lap Speed
Start Time	23.0	End Time	30.0	Every X Seconds	0.025	Primary Gea	r 2.0	Trans Ratios T
	20.0		00.0		0.025	Ratio	2.0	- Primary
ateral Acc G's	Lap Spd Cha	art Lap	Time Tr	ack Size Skip	Pad G's	Avg Rate Acc	Metric	Drive

GEAR

- 1) Calculate Speed (MPH) from RPM, Rear Gear Ratio, Trans Gear Ratio(s), and Tire Diameter.
- 2) Calculate RPM from MPH, Rear Gear Ratio, and Tire Diameter.
- 3) Estimate Trans First Gear Ratio Needed Manual.
- 4) Estimate Trans First Gear Ratio Needed Automatic.
- 5) Calculate RPM after Trans Gear Change (Shift) and percent of original RPM using RPM, and Trans Gear Ratios.
- 6) Calculate Rear Gear Ratio needed using MPH, RPM, Tire Diameter, and Trans Gear Ratio 1.
- 7) Calculate Rear Gear Ratio from tooth count of Ring (Motorcycle Front Sprocket) and Pinion Gears (Motorcycle Rear Sprocket).
- 8) Calculate Rear Gear Ratio change on RPM using Rear Gear Ratio, New Rear Gear Ratio, MPH, and Tire Diameter. Output is RPM will be for Rear Gear Ratio and New RPM will be for New Rear Gear Ratio.
- 9) Calculate Rear Gear Ratio needed after Tire Size Change using Tire Diameter, New Tire Diameter, and Gear Ratio. Also speedometer error if not Rear Ratio change.
- 10)Calculate Lap Speed (MPH) over Measured Distance (Track Size) in Miles and Track / Lap Time in seconds.
- 11)Calculate Lap Speed (MPH) Chart over Measured Distance (Track Size) in Miles and Start/End/Every Time in seconds.
- 12)Calculate Lap Time in second from Measured Distance (Track Size) in miles and Lap Speed (MPH).
- 13)Calculate Measured Distance (Track Size) in miles from Lap time in seconds and Lap Speed (MPH).
- 14) Calculate Skip Pad G's (Lateral Acceleration) from Turn Radius in feet and Lap Time in seconds.

- 15)Speedometer Check maintain constant 60 MPH and enter time to travel one mile in Track /Lap Time in seconds. MPH will show True MPH.
- 16)Calculate Trans Gear Change (Shift) using Peak Torque RPM, and Trans Gear Ratios. a. Note: If the engine has a flat torque curve, use the RPM at which the curve starts to dip.
- 17)Calculate Tire's nominal Diameter using Wheel Size, Tire width, and Aspect Ratio.
- 18)Calculate New Tire's nominal Diameter using Wheel Size, Tire width, and Aspect Ratio.
- 19)Calculate Cornering G's (Lateral Acceleration) from Turn Radius in feet and MPH.
- 20)Calculate Average Rate of Acceleration from Rest to x Feet using Track Size, Track / Lap Time showing results in Skip Pad G's.
 - a. This calculation assumes a constant rate of Acceleration.
- 21)Calculate Average Rate of (DE) Acceleration from Rest to x MPH using Track / Lap Time and MPH, showing results in Skip Pad G's. Can also Calculate Rate for change in MPH enter (High MPH - Low MPH) Value in MPH.
 - a. This calculation assumes a constant rate of (DE) Acceleration.
- 22)Calculate Percent Converter Slippage from Speed (MPH), RPM, Rear Gear Ratio, Trans Gear Ratio 7, and Tire Diameter.
- 23) Calculate Effective Rear Ratio Using Tire Radius, Rear Gear Ratio, and Trans 1st Gear Ratio.
- 24)Calculate Trans Gears From 1st Gear and percentage drop.
- 25)Added Calculate Trans Drop % Needed Using Trans 1st Gear Ratio (low gear), Trans 9th Gear Ratio (high gear), and Trans 10th Gear Ratio (number of gears).
- 26) Calculate Trans Gear Ratios using the user supplied Input Shaft, Cluster Gears, and Output Shaft Gears Tooth Counts.

NOTE: All calculations are based on NO Tire Growth.

NOTE: The Primary Drive can also be used for Gear Vendors overdrive unit. If you have a 0.765:1 overdrive enter 1000 for the front sprocket and 765 for the rear sprocket check Primary drive and it will show 0.076500:1 rato. It can also be used if you are working with a quick change rear end.

Gear / Tire / Sp	peed Inform	ation Calculat	or					
∟Trans Gear	Ratios fro	m Tooth Cou	unts ———	-MPH in I	Gear —	-Tran	s Ratio ₁	Overall Ratio
Cluster Gear	14	Output Shaft	34	1st Gear	34.843		2.42857	13.325
Tooth Count	15	Gear Tooth Count	31	2nd Gear	50.329		2.06667	9.225
	17	Count	29	3rd Gear	90.592		1.70588	5.125
	19		27	4th Gear	113,240		1.42105	4.100
	21		25	5th Gear	130.161		1.19048	3.567
	10		10	6th Gear	0.0		1.00000	0.0
	25		21	7th Gear	0.0		0.84000	0.0
	27		19	8th Gear	0.0		0.70370	0.0
	0		0	9th Gear	0.0		0.00000	0.0
	0		0	10th Gear	0.0		0.00000	0.0
				Track Size	1.	366	Skid Pad G Lateral Ace	- 1 BA221
Input Cluster		Input Shaft		Track / Lap	Time 29	9.56	Turn Radiu:	s <u>100.0</u>
Gear Tooth Count	10	Gear Tooth Count	10	% Converter Slippage	1	1.34	Primary Front Sprock	
				Trans Drop	% 81	.25	Rear Sprock	.et 24
Calculate	Clea	r Fields	Done	EveryXSeo	conds 0.0		Primary Gear Ratio	2.00

Trans Ratio	-Shift - RPM - After	-MPH in Gear ——	-Trans Ratio
2.80	1 - 2 5290-81.39%	1st Gear 13.25	2.80
0.0	2 - 3 5290-81.39%	2nd Gear 23.25	2.27891
0.0	3 - 4 5290-81.39%	3rd Gear 33.25	1.85479
0.0	4 - 5 5290-81.39%	4th Gear 43.25	1.50960
0.0	5 - 6 5290-81.39%	5th Gear 53.25	1.22866
0.0	6 - 7 5290-81.39%	6th Gear 63.25	1.00000
0.0	7 - 8 5290-81.39%	7th Gear 73.25	0.81389
0.0	8 - 9 5290-81.39%	8th Gear 83.25	0.66242
1.0	9 - 10 5290-81.39%	9th Gear 93.25	0.53914
6		10th Gear 103.25	0.43881

Track Size is 1.366 Miles

Lap Time	MPH	Τ	Lap Time	MPH	Ι	Lap Time	MPH
23.000	213.80870		23.675	207.71278	Ľ	24.350	201.95483
23.025	213.57655		23.700	207.49367	Í	24.375	201.74769
23.050	213.34490		23.725	207.27503	Í	24.400	201.54098
23.075	213.11376		23.750	207.05684	Í	24.425	201.33470
23.100	212.88312		23.775	206.83912	Í	24.450	201.12883
23.125	212.65297		23.800	206.62185	ĺ	24.475	200.92339
23.150	212.42333		23.825	206.40504		24.500	200.71837
23.175	212.19417		23.850	206.18868		24.525	200.51376
23.200	211.96552		23.875	205.97277		24.550	200.30957
23.225	211.73735		23.900	205.75732		24.575	200.10580
23.250	211.50968		23.925	205.54232		24.600	199.90244
23.275	211.28249		23.950	205.32777		24.625	199.69949
23.300	211.05579		23.975	205.11366		24.650	199.49696
23.325	210.82958		24.000	204.90000		24.675	199.29483
23.350	210.60385		24.025	204.68678		24.700	199.09312
23.375	210.37861		24.050	204.47401		24.725	198.89181
23.400	210.15385		24.075	204.26168		24.750	198.69091
23.425	209.92956		24.100	204.04979		24.775	198.49041
23.450	209.70576		24.125	203.83834		24.800	198.29032
23.475	209.48243		24.150	203.62733		24.825	198.09063
23.500	209.25957		24.175	203.41675		24.850	197.89135
23.525	209.03719		24.200	203.20661		24.875	197.69246
23.550	208.81529		24.225	202.99690		24.900	197.49398
23.575	208.59385		24.250	202.78763		24.925	197.29589
23.600	208.37288		24.275	202.57878		24.950	197.09820
23.625	208.15238		24.300	202.37037		24.975	196.90090
23.650	207.93235		24.325	202.16238		25.000	196.70400

Acceleration / Top	Speed Calc	ulator / Road Hi	Þ					
MPH	192.453	Rear Gear Ratio	4.1	Primary Gear Wheel Thrust	2.0			
Tire Diameter	24.0	Trans Gear	1	Force	2874.3	1		
Tire Rolling Radius	12.0	Tire Rolling Resistance	0.015	Roll Resistance Loss	27.77			
Coefficient of Drag (CD)	0.34	Aerodynamic HP Loss	777.77	Wheel Drive Torque	2874.1	2		
% Drive Train Power Loss	12.5	Launch RPM	5200	Frontal Area Wind Direction		_		
G Force from Acceleration	1.234	Vehicle Weight plus driver	2350.0		,			
% Rear End	6.5	Dyno Correct Factor	1.00					
Power Loss % Converter	3.25	Factor Torque	444.0					
Slippage		Converter Stall		-				
Rollout Distance	11.75	Speed	2350				Throttle S RPM	4000
Top Speed Track	436.4	Torque Multiplier	1.6				Throttle S Time	1 -000
SAE Corrected HP	436.4	Wind Speed Coefficient of	0				CVT RPM	9500
Width	74.5	Mu	5.0	Do-dup ppy	1 Data and Car		CVT Power Los	s 20.0
Height	55.75	Shift Torque Up + or Down - "xxxx" RPM	2350		1 Rate per Sec. 0 used in place File Times	0	- Track - BP or Air Density	29.92126
Wheel Torque	<u>A</u> ero/Roll Hp	A <u>c</u> celeratio	n <u>R</u> oa	ad HP R	LOad HP	Est Frontal Area	Hood Scoop	Quit
Shift Torque Data	DCF Torque	Data Top Spe	ed HP	Road HP	□ Sh	ow RPS Rate	Throttle Stop	СУТ
Sub Screens	Nitrous Scree	n Graphing Sc	reen Tra	ans/Shift RPM		SLR Chart	Automatic Trans	Primary Drive

Acceleration and Top Speed

This form lets enthusiasts predict many aspects of vehicle acceleration run. You can then vary 1 or more parameters like "Rear End Gear Ratio" or "Tire Diameter" and "Tire Radius" and rerun to see what effect the changes have on performance. These estimates can be used for street performance, drag strip, or all out speed runs.

To see how changes in weather will affect a run, use the **Weather Form** to calculate the Dyno Correction Factor. Because weather conditions influence engine torque and HP you need to adjust the Dyno Correction Factor to match the weather conditions at the track if you are trying to match a run. These calculations may take a number of seconds on slower computers.

- 1) Calculate Drive Wheel Torque using Torque, Trans First Gear, Rear Gear Ratio, and % Drive Train Power Loss (est. RWD Manual Trans 15%, RWD Automatic Trans 20%) also Wheel Thrust from Drive Wheel Torque and Tire Rolling Radius.
- Calculate Aerodynamic Drag / HP Loss from Coefficient of Drag, Frontal Area, and MPH, and Track - BP or Air Density. --- Calculate Rolling Resistance / HP Loss from Tire Rolling Resistance, Car Weight, and MPH.

NOTE: If the Torque numbers (Entered in the parameter file with Acceleration = RPM Torque. See example parameter file CARFOR.PRM or the listing at the end of this manual) are from a chassis dyno use 0 (zero) for % Rear End Power Loss and Trans % Power Loss.

NOTE: All calculations are based on **NO** tire slippage and **NO** clutch slippage. Adjusting the Coefficient of Mu can modify this.

NOTE: If **Automatic Trans Box is checked** then user may enter % Converter Slippage, Converter Stall Speed (For best results this should be about peak torque RPM) and Converter Torque Multiplier (for stock this is 2.0 to 2.3, for street / strip this is 1.7 to 2.1, for racing this is 1.4 to 1.8, best to check with converter manufacturer).

NOTE: If **Automatic Trans Box is checked** and the converter and is not a lockup than the vehicle will normally run a lower MPH than a stick shift because of converter slippage.

NOTE: The Coefficient of Drag also known as CD many times can be gotten from the manufacturer, Automotive magazines or the Internet.

NOTE: The Frontal Area many times can be gotten from the manufacturer, if not it can be estimated on this screen from the vehicle width and height. On calculations below around 135 MPH this will not have a large effect.

NOTE: For most street tires use a Tire Growth percentage of 0 (zero).

NOTE: If **Hood Scoop Box is checked** (Ram Air) this will calculate a positive pressure in the intake track.

3) Acceleration and Top Speed Prediction Chart with 60 foot, 330 foot, 1/8 Mile, and 1/4 Mile ET using RPM and Torque from Acceleration = in Parameter File also Coefficient of Drag, Frontal Area, Tire Rolling Resistance (use 0.015 Concrete/0.017 Asphalt), Tire Diameter, Tire Rolling Radius, Launch RPM, % Rear End Power Loss, % Power Loss, Vehicle Weight with Driver, Dyno Correction Factor, Shift RPM's, Tire Growth Percentages, Trans Gear Ratios, Shift Time.

NOTE: Data is logged from a full throttle acceleration run in a single Trans. Gear. Log each MPH or RPM with a time stamp. You will get the best result will be using a 1:1 trans gear. These numbers are added to a parameter file with Road HP = MPH Time and ROad HP = RPM Time. See example parameter file CARFOR.PRM or the listing at the end of this manual

NOTE: The Horse Power and Torque numbers generated will be similar to those from a chassis dyno for this vehicle.

Smooth HP Graph: Can content an "N" for NO or NONE or a1 to a5 (moving average) or w1 to w4 (weighted moving average) or s1 to s4 (squared weighted moving average).

- 4) Horse Power (Rear Wheel) Prediction Chart using MPH and Times from Parameter File also Coefficient of Drag, Frontal Area, Tire Rolling Resistance, Tire Growth, Tire Diameter, Vehicle Weight with Driver, Trans Gear.
- 5) Horse Power (Rear Wheel) Prediction Chart using RPM and Times from Parameter File also Coefficient of Drag, Frontal Area, Tire Rolling Resistance, Tire Growth, Tire Diameter, Vehicle Weight with Driver, Trans Gear.
- 6) Horse Power (Rear Wheel) Prediction Chart using MPH and Times from Parameter File and Vehicle Weight with Driver. Also optional Coefficient of Drag, Frontal Area, Track BP or Air Density.
- 7) Estimate Frontal Area (Sq. Ft.) from Width and Height (inches).
- 8) Graph Engine RPM (X-axis) / Torque (BLUE) / Corrected Torque (YELLOW) / Horse Power (GREEN) / Corrected Horse Power (RED) Y-axis using Torque and RPM inputs for Acceleration / Top Speed Graph. Corrected numbers will only show if Dyno Correction Factor is anything other than one.
- 9) Graph Wheel Torque, RPM on X-axis and Wheel Torque on Y-axis using same inputs as Acceleration / Top Speed.
- 10)Graph Wheel Torque, MPH on X-axis and Wheel Torque on Y-axis using same inputs as Acceleration / Top Speed and Graph X high value / Graph Y high value.
- 11)Graph G Forces, Time on X-axis and G force on Y-axis using same inputs as Acceleration / Top Speed.
- 12)Graph G Forces, RPM on X-axis and G force on Y-axis using same inputs as Acceleration / Top Speed.
- 13)Graph MPH on X axis, Aero Drag HP, Tire Rolling Resistance HP, Total HP Drag (DARK BLUE) and Corrected HP at Drive Wheel(s) on Y axis using same inputs as Acceleration / Top Speed and Graph X high value / Graph Y high value.
- 14)Graph MPH on X-axis, ET on Y-axis using same inputs as Acceleration / Top Speed and Graph X high value / Graph Y high value.
- 15)Graph MPH on X-axis, RPM on Y-axis using same inputs as Acceleration / Top Speed and Graph X high value / Graph Y high value.

- 16) This will Shift the Torque Curve Up / Increase 'XXXX' RPM or Down / Decrease '-XXXX' RPM Note if Fuel lbs/hr is present it is also Modified.
- 17)Graph ET on X-axis, Nitrous HP on Y-axis using same inputs as Acceleration / Top Speed and Graph X high value / Graph Y high value.
- 18)Graph RPM on X-axis, Fuel lbs/hr on Y-axis and uses Graph X high value / Graph Y high value.
- 19) Graph RPM on X-axis, BSFC on Y-axis and uses Graph X high value / Graph Y high value.
- 20)Graph RPM on X-axis, Air / Fuel Ratio on Y-axis and uses Graph X high value / Graph Y high value.
- 21) Graph RPM on X-axis, SCFM on Y-axis and uses Graph X high value / Graph Y high value.
- 22) Graph RPM on X-axis, % VE on Y-axis and uses Graph X high value / Graph Y high value.
- 23)Graph RPM on X-axis, Un-Corrected HP on Y-axis and uses Graph X high value / Graph Y high value.
- 24) Graph RPM on X-axis, Un-Corrected Torque on Y-axis and uses Graph X high value / Graph Y high value.
- 25) Graph RPM on X-axis, Corrected HP on Y-axis and uses Graph X high value / Graph Y high value.
- 26)Graph RPM on X-axis, Corrected Torque on Y-axis and uses Graph X high value / Graph Y high value.
- 27)Graph RPM on X-axis, Un-Corrected BMEP on Y-axis and uses Graph X high value / Graph Y high value.
- 28) Acceleration and Top Speed Prediction Chart with 60 foot, 330 foot, 1/8 Mile, and 1/4 Mile ET using RPM and Torque from Acceleration = in Parameter File also Coefficient of Drag, Frontal Area, Tire Rolling Resistance (use 0.015 Concrete/0.017 Asphalt), Tire Diameter, Tire Rolling Radius, CVT RPM, CVT Power Loss, Vehicle Weight with Driver, Dyno Correction Factor, Tire Growth Percentages, CVT.
- 29) Nitrous Screen. This will bring up the Nitrous Entry Screen.
- 30) This will Modify the Torque Curve Up / Increase or Down / Decrease using Dyno Correction Factor. Note if Fuel lbs/hr is present it is also Modified.
- 31)Estimate HP for Top Speed Prediction / MPH using MPH, Coefficient of Drag, Frontal Area, Tire Rolling Resistance, Tire Diameter, % Rear End Power Loss, % Power Loss, Dyno Correction Factor, Track - BP or Air Density. -- For Bonneville try using these as a baseline --TRR = 0.09, DCF = 1.2134, Track BP = 25.65 NOTE: This is NOT for 1/4 Mile or Drag Racing.

NOTE: How different changes will effect the 1 / 4 Mile Acceleration Simulation (60 foot, ET, and MPH).

- 1) Aero Drag Reduce it increases MPH and increase it decrease MPH with almost no effect on ET.
- 2) Engine Power Curve Increase it decreases ET and increases MPH and reduce it increases ET and lowers MPH
- 3) **Traction** Reduce it decreases 60 foot times and increase it increases 60 foot times with almost no effect on MPH.
- 4) Tire Growth Increase it increases MPH and reduce it decrease MPH with almost no effect on ET.
- 5) Shift Times Increase it increases ET and reduce it decrease ET with almost no effect on MPH.
- 6) Power Loss % Increase it increases ET and lowers MPH and reduce it decrease ET increases MPH.
- 7) **Coefficient of Mu (Traction)** A larger number will increase traction (lower 60 foot times and ET) and a smaller number will decrease traction (raise 60 foot times and ET).
- 8) Converter Stall RPM

□Graphing and	Dvno Sheet /	Text Benort —	
Smooth HP Graph			
	N	Text Report RPM	/HP/TORD/BMEP
Graph X High Value	10	Dyno Baro Pressure	29.92
Graph Y High Value	10	Dyno Vapor Pressure	0.45
Graph Dyno 🛛	Compact Text Report	Dyno Temperature	95.5
Fuel lbs/hr	BSFC	A/F Ratio	SCFM
% VE	UnCorr HP	UnCorr TQ	UnCorr BMEP
Corr HP	Corr TQ	Graph Y Low Valu	ie 0
	BSAC	Corr Factor	🗖 Torque NM
Graph Accelerat	ion Data —		- 🗌 Coast G's
Torq/HP	Wheel Torque	G Force Time	G Force RPM
Aero <u>D</u> rag HP	MPH/E <u>T</u>	MPH/RPM	RPM/MPH
MPH/WTq	ET/Nitr HP	ET/RPS Rate	
Graph Plus			Done

**

Wind Speed Direct – 0 Head Wind North 22.5 NNE 45 NE 67.5 ENE 90 East 180 Tail Wind South 270 West

Example of the Text Report RPM / HP / Torque / BMEP

Engine Size = 598.0 ci

				Fuel		UnCorr	UnCorr UnCorr Corre	ect
RPM	Horse	Torque	BMEP	lb/hr	BSFC	HP	Torque BMEP Fact	cor
5000	666.4	700.0	176.5					
5500	754.0	720.0	181.6					
6000	856.8	750.0	189.1					
6500	965.3	780.0	196.7					
7000	1079.6	810.0	204.3					
7500	1199.5	840.0	211.8					
8000	1249.0	820.0	206.8					
8500	1319.0	815.0	205.5					
9000	1336.6	780.0	196.7					
9500	1333.1	737.0	185.9					
10000	1304.3	685.0	172.7					
AVG:								
7500	1096.7	767.0	193.4					
MIN:								

146 - CARFOR Performance Software by Stan Weiss / World Wide Enterprises

5000 666.4 685.0 172.7 MAX: 10000 1336.6 840.0 211.8 Average based on = 11 points Engine Size = 564.9466 ci Bore = 4.335Stroke = 4.25Rod Length = 6.4Cubic Inches = 501.8188 Dyno BP = 30.07Dyno VP = 0.46Dyno Temp = 73.0Data for Acceleration / Top speed calculator ; The following parameters must be in Ascending Order by RPM ; ; RPM Torque Fuel BSFC A/F lb/hr Ratio ; Acceleration = 4500 567.5 217.6 0.46 13.2 Acceleration = 4600 577.2 234.5 0.48 12.6 Acceleration = 4700 584.5 233.2 0.46 13.0 Acceleration = 4800 584.2 244.5 0.47 12.8 Acceleration = 4900 583.8 238.6 0.45 13.4 Acceleration = 5000 591.1 246.8 0.45 13.4 Acceleration = 5100 593.7 251.9 0.45 13.4 Acceleration = 5200 595.1 270.4 0.47 12.9 Acceleration = 5300 587.2 271.1 0.47 13.0 Acceleration = 5400 582.6 279.1 0.48 13.0 Acceleration = 5500 579.6 281.8 0.48 13.1 Acceleration = 5600 578.9 294.6 0.49 12.9 Acceleration = 5700 566.4 298.9 0.50 12.9 Acceleration = 5800 564.3 302.5 0.50 13.1 Acceleration = 5900 562.0 304.7 0.49 13.2 Acceleration = 6000 563.6 307.3 0.49 13.4 Acceleration = 6100 559.9 322.4 0.51 12.9 Acceleration = 6200 546.5 310.8 0.49 13.4 Acceleration = 6300 534.5 333.6 0.53 12.5 Acceleration = 6400 522.7 337.5 0.54 12.6 Acceleration = 6500 499.1 334.2 0.56 12.6 Acceleration = 6600 489.2 334.3 0.56 12.8 Engine Size = 501.8188 ci Dyno Barometric Pressure = 30.07 - Dyno Vapor Pressuree = 0.46 - Dyno Air Temperature = 73.0 Fuel UnCorr UnCorr UnCorr Correct A/F RPM Horse Torque BMEP lb/hr BSFC Torque Ratio ΗP BMEP Factor 4500 486.2 567.5 170.5 217.60 .4600 473.0 552.1 165.9 1.0279 13.20 577.2 173.5 557.8 167.6 1.0348 12.60 4600 505.5 234.50 .4800 488.5 584.5 175.6 566.5 170.2 1.0318 13.00 4700 523.1 233.20 507.0 .4600 584.2 175.6 .4700 569.2 171.0 1.0264 12.80 4800 533.9 244.50 520.2 568.3 170.8 1.0273 13.40 4900 544.7 583.8 175.4 238.60 .4500 530.2 5000 562.7 591.1 177.6 246.80 .4500 548.4 576.1 173.1 1.0261 13.40 593.7 178.4 251.90 559.8 576.5 173.2 1.0299 13.40 5100 576.5 .4500 5200 589.2 595.1 178.8 270.40 .4700 575.3 581.1 174.6 1.0241 12.90 5300 592.6 587.2 176.5 271.10 .4700 576.8 571.6 171.8 1.0273 13.00 582.6 175.1 .4800 581.5 565.5 169.9 1.0302 13.00 5400 599.0 279.10 .4800 5500 607.0 579.6 174.2 281.80 587.1 560.6 168.5 1.0339 13.10 .4900 5600 617.3 578.9 174.0 294.60 601.2 563.9 169.4 1.0267 12.90 .5000 5700 614.7 566.4 170.2 298.90 597.8 550.8 165.5 1.0283 12.90 .5000 547.8 164.6 5800 623.2 564.3 169.6 302.50 605.0 1.0300 13.10 5900 631.3 562.0 168.9 304.70 .4900 621.8 553.5 166.3 1.0153 13.20 165.0 6000 643.9 563.6 169.4 307.30 .4900 627.1 549.0 1.0267 13.40 163.6 322.40 12.90 6100 650.3 559.9 168.3 .5100 632.2 544.3 1.0287 537.3 13.40 6200 645.1 546.5 164.2 310.80 .4900 634.3 161.5 1.0171 6300 641.2 534.5 160.6 333.60 .5300 629.4 524.7 157.7 1.0186 12.50 6400 637.0 522.7 157.1 337.50 .5400 625.0 512.9 154.1 1.0191 12.60 617.7 499.1 150.0 482.2 12.60 6500 334.20 .5600 596.8 144.9 1.0350 6600 614.8 489.2 147.0 .5600 597.0 475.0 142.8 1.0298 12.80 334.30

CARFOR Performance Software by Stan Weiss / World Wide Enterprises - 147

SCFM

627.1

645.1

661.9

829.8

841.9

865.2

878.2

899.1

908.1

909.3

910.5

928.5

919.4

934.3

VE%

99.4

100.0

100.5

105.7

105.3

106.4

106.2

106.9

106.2

104.6

103.1

103.5

100.9

101.0

683.3 101.5

698.1 101.6

722.1 103.0

737.0 103.1

761.6 104.5

769.5 103.6

792.2 104.6

806.0 104.5

AVG:											
5550	593.5	564.3	169.6	284.10	.4900	578.0	549.4	165.1	13.00	805.8	103.5
MIN:											
4500	486.2	489.2	147.0	217.60	.4500	473.0	475.0	142.8	12.50	627.1	99.4
MAX:											
6600	650.3	595.1	178.8	337.50	.5600	634.3	581.1	174.6	13.40	934.3	106.9
Average	based o	on = 22	points								
-			-								

Dyno BP = 29.	92					
Dyno $VP = 0.4$	16					
Dyno Temp = 7	/1.0					
;	RPM	Torque	e Fuel	L BSFC	A/F	SCFM
;			lb/ł	ır	Ratio	
Acceleration =	3600	517.2	176.7	0.498	0.0	447.0
Acceleration =	3700	537.7	175.9	0.464	0.0	469.0
Acceleration =	3800	552.4	174.4	0.436	0.0	487.0
Acceleration =	3900	556.8	172.3	0.417	0.0	510.0
Acceleration =	4000	564.1	180.4	0.42	0.0	522.0
Acceleration =	4100	570.0	189.9	0.427	0.0	533.0
Acceleration =	4200	571.9	196.9	0.431	0.0	562.0
Acceleration =	4300	572.4	198.0	0.423	0.0	592.0
Acceleration =	4400	571.4	213.0	0.445	0.0	595.0
Acceleration =	4500	566.1	213.0	0.439	0.0	620.0
Acceleration =	4600	565.1	221.9	0.448	0.0	638.0
Acceleration =	4700	570.5			0.0	665.0
Acceleration =	4800	557.3	227.4	0.446	0.0	693.0
Acceleration =	4900	550.4	236.0	0.46	0.0	699.0
Acceleration =				0.442	0.0	690.0
Acceleration =					0.0	721.0
Acceleration =	5200	525.5	251.4	0.483	0.0	715.0
Acceleration =	5300	517.2	251.5	0.482	0.0	710.0
Acceleration =		518.2	252.3		0.0	717.0
Acceleration =		511.8			0.0	739.0
Acceleration =	5600	496.7	251.9	0.476	0.0	750.0
Acceleration =			255.0		0.0	789.0
Acceleration =		480.1	258.6		0.0	771.0
Acceleration =		468.9		0.483	0.0	766.0
Acceleration =	6000	455.7	253.1	0.486	0.0	774.0

Engine Size = 458.8724 ci

Dyno Barometric Pressure = 29.92 - Dyno Vapor Pressuree = 0.45 - Dyno Air Temperature = 71.0

				Fuel		UnCorr	UnCorr	UnCorr	Correct	A/F		
RPM	Horse	Torque	BMEP	lb/hr	BSFC	HP	Torque	BMEP	Factor	Ratio	SCFM	VE%
3600	354.5	517.2	170.0	176.70	.4980	354.8	517.6	170.1	.9991	11.59	447.0	96.9
3700	378.8	537.7	176.7	175.90	.4640	379.1	538.1	176.8	.9992	12.21	469.0	99.0
3800	399.7	552.4	181.5	174.40	.4360	400.0	552.8	181.7	.9992	12.79	487.0	100.1
3900	413.5	556.8	183.0	172.30	.4170	413.2	556.4	182.9	1.0007	13.56	510.0	102.1
4000	429.6	564.1	185.4	180.40	.4200	429.5	564.0	185.3	1.0002	13.25	522.0	101.9
4100	445.0	570.0	187.3	189.90	.4270	444.7	569.7	187.2	1.0005	12.85	533.0	101.5
4200	457.3	571.9	187.9	196.90	.4310	456.8	571.3	187.7	1.0011	13.07	562.0	104.5
4300	468.6	572.4	188.1	198.00	.4230	468.1	571.7	187.9	1.0012	13.69	592.0	107.5
4400	478.7	571.4	187.8	213.00	.4450	478.7	571.3	187.8	1.0001	12.79	595.0	105.6
4500	485.0	566.1	186.0	213.00	.4390	485.2	566.3	186.1	.9997	13.33	620.0	107.6
4600	494.9	565.1	185.7	221.90	.4480	495.3	565.5	185.8	.9993	13.17	638.0	108.3
4700	510.5	570.5	187.5	223.20	.4370	510.8	570.7	187.6	.9996	13.65	665.0	110.5
4800	509.3	557.3	183.1	227.40	.4460	509.9	557.9	183.3	.9990	13.96	693.0	112.7
4900	513.5	550.4	180.9	236.00	.4600	513.0	549.9	180.7	1.0009	13.57	699.0	111.4
5000	522.2	548.5	180.3	230.60	.4420	521.7	548.0	180.1	1.0009	13.70	690.0	107.7
5100	526.4	542.1	178.2	243.00	.4620	526.0	541.7	178.0	1.0008	13.59	721.0	110.4
5200	520.3	525.5	172.7	251.40	.4830	520.5	525.7	172.8	.9996	13.03	715.0	107.4
5300	521.9	517.2	170.0	251.50	.4820	521.8	517.1	169.9	1.0003	12.93	710.0	104.6
5400	532.8	518.2	170.3	252.30	.4740	532.3	517.7	170.1	1.0010	13.02	717.0	103.7
5500	536.0	511.8	168.2	259.10	.4830	536.4	512.3	168.3	.9991	13.06	739.0	104.9
5600	529.6	496.7	163.2	251.90	.4760	529.2	496.3	163.1	1.0008	13.64	750.0	104.6
5700	522.7	481.6	158.3	255.00	.4880	522.5	481.5	158.2	1.0003	14.17	789.0	108.1
5800	530.2	480.1	157.8	258.60	.4880	529.9	479.8	157.7	1.0005	13.65	771.0	103.8

148 - CARFOR Performance Software by Stan Weiss / World Wide Enterprises

5900 6000	526.8 520.6	468.9 455.7	154.1 149.8	254.50 253.10	.4830 .4860	526.9 520.8	469.0 455.9	154.1 149.8	.9997 .9997	13.78 14.01	766.0 774.0	101.4 100.7
AVG: 4800 MIN:	485.1	534.8	175.7	222.40	.4575	485.1	534.7	175.7		13.28	647.0	105.1
3600 MAX:	354.5	455.7	149.8	172.30	.4170	354.8	455.9	149.8		11.59	447.0	96.9
6000	536.0	572.4	188.1	259.10	.4980	536.4	571.7	187.9		14.17	789.0	112.7

Average based on = 25 points

NOTE: If **Nitrous Box is checked** this will let the User have different HP levels of Nitrous. Stage 1 will be shown in the Graphing of HP and Torque. All Stages will be used in the acceleration calculations.

- 1) Set Trans Gear to 9 for any Trans based Stages you will not use and set Nitrous Start Time to 9999 for any Time based Stages you will not be using.
- 2) If you want a given Stage to start at the beginning of a Trans Gear set Nitrous RPM Start to 1.
- 3) For non-progressive (all on at once) set Nitrous HP Starting % to 100.
- 4) You can use both trans / RPM based and Time based Stages in the same simulation.
- 5) The Number of the Stage has nothing to do with the order in which it is applied during the simulation.
- If the **Rear Wheel Box is checked** no power loss will be removed from the nitrous HP.

If you are using a duel ramp with lets say the first ramp pretty flat and the second ramp pretty steep and short then you need to approach this as two stages.

If you are using banking then you need to approach this as two stages also.

The acceleration run will use the data entered on the Nitrous Screen Only if the Nitrous Box is checked.

Acceleration / Top Speed Calculator / Road HP Nitrous - Progressive - Multi Stage											
	Trans Gear	Nitrous HP	Nitrous RPM Start	Nitrous HP Starting %	Nitrous RPM Full						
Stage 1	1	110	1	100	1						
Stage 2	2	120	2200	75	2220						
Stage 3	3	130	3300	50	3330						
Stage 4	4	140	4400	25	4440						
Stage 5	5	150	5500	0	5550						
Stage 6	9	160	6600	0	6660						
Stage 7	9	170	7700	0	11050						
	N Stop Time	Nitrous HP	Nitrous Start Time	Nitrous HP Starting %	Nitrous Full Time						
Stage 8	6.543	150	0.65	50	1.1						
	0.010	100	0.00		1.1						
Stage 9	9999	150	1.5	75	2.3						
Stage 9 Stage 10											
_	9999	150	1.5	75	2.3						
Stage 10	9999 9999	150 150	1.5 2.8	75 100	2.3 2.8						
Stage 10 Stage 11	9999 9999 9999 9999	150 150 150	1.5 2.8 9999	75 100 100	2.3 2.8 9999						
Stage 10 Stage 11 Stage 12	9999 9999 9999 9999 9999	150 150 150 150 150 150	1.5 2.8 9999 9999	75 100 100 100	2.3 2.8 9999 9999						

Acceleration and Top Speed Prediction Chart with 60 foot, 330 foot, 1/8 Mile, and 1/4 Mile ET using RPM and Torque from Acceleration = in Parameter File also Coefficient of Drag, Frontal Area, Tire Rolling Resistance (use 0.015 Concrete/0.017 Asphalt), Tire Diameter, Tire Rolling Radius, Launch RPM, % Rear End Power Loss, % Power Loss, Vehicle Weight with Driver, Dyno Correction Factor, Shift RPM's, Tire Growth Percentages, Trans Gear Ratios, Shift Time.

Acceleration and Top Speed Prediction Chart.

RPM	МРН	Velocity	Motor	Force @	Aero dynamic	Rolling Resist.	Elapsed Time	Total		RPM Rate	Hood Scp
		ft/sec	Torque	Wheel	Drag - HP	HP	(ET)	Distance	in G's	Change	Pressure
8249.5	0.00	.000	854.0	0.0	.000	.000	.0000	-1.000	.000	0.0	.0000
8249.5	5.00	7.336	854.0	7186.2	.004	.470	.0757	722	3.014	669.8	.0000
8249.5	9.50 BollOut	13.928	854.0	7186.2 Distanc	.028 e and ET St	.893	.1436	.000	3.014	669.8	.0000
8249.5	10.00	14.669	854.0	7186.2	.033	.940	.0076	.109	3.014	669.8	.0000
8249.5	15.00	22.003	854.0	7186.2	.111	1.410	.0833	1.496	3.014	669.8	.0000
8249.5	20.00	29.336	854.0	7186.2	.264	1.880	.1589	3.438	3.014	669.8	.0000
8249.5 8249.5	25.00 30.00	36.669 44.002	854.0 854.0	7186.2 7186.2	.515	2.350 2.820	.2345 .3102	5.934 8.984	3.014 3.014	669.8 669.8	.0000 .0000
8249.5	35.00	51.336	854.0	7186.2	1.413	3.290	.3858	12.590	3.014	669.8	.0000
8249.5	40.00	58.669	854.0	7186.2	2.108	3.760	.4614	16.750	3.014	669.8	.0000
8249.5	45.00	66.002	854.0	7186.2	3.002	4.230	.5371	21.464	3.014	669.8	.0000
8249.5 8249.5	50.00 55.00	73.336 80.669	854.0 854.0	7186.2 7186.2	4.118 5.481	4.700 5.170	.6127 .6883	26.734 32.558	3.014 3.014	669.8 669.8	.0000 .0000
8249.5	60.00	88.002	854.0	7186.2	7.116	5.640	.7640	38.936	3.014	669.8	.0000
8250.0	60.22	88.321	854.0	7186.2	7.193	5.661	.7673	39.226	3.014	669.8	.0644
8350.0	60.95	89.391	853.0	7177.5	7.458	5.729	.7783	40.207	3.014	9056.9	.0660
8450.0 8550.0	61.68 62.41	90.462 91.532	852.0 851.0	7168.8 7160.2	7.729 8.007	5.798 5.866	.7893 .8004	41.200 42.205	3.014 3.014	9056.9 9056.9	.0676 .0692
8650.0	63.14	92.603	849.9	7151.5	8.291	5.935	.8114	43.221	3.014	9056.9	.0708
8750.0	63.87	93.674	845.8	7116.7	8.582	6.004	.8225	44.250	3.007	9036.7	.0724
8850.0	64.60	94.744	841.6	7081.8	8.880	6.072	.8336	45.295	2.992	8991.5	.0741
8905.3 8950.0	65.00 65.33	95.336 95.815	839.3 837.5	7062.5 7046.9	9.047 9.184	6.110 6.141	.8397 .8447	45.880 46.357	2.983 2.977	8966.4 8946.1	.0750 .0758
9050.0	66.06	96.885	833.4	7012.2	9.495	6.209	.8559	47.437	2.962	8901.0	.0775
9150.0	66.79	97.956	829.2	6977.2	9.814	6.278	.8672	48.534	2.947	8855.6	.0792
9250.0	67.52	99.026	824.4	6936.6	10.139	6.347	.8785	49.650	2.929	8802.8	.0810
9350.0 9450.0	68.25 68.98	100.097 101.167	819.5 814.7	6895.7 6855.1	10.471 10.811	6.415 6.484	.8899 .9014	50.784 51.938	2.911 2.894	8749.7 8696.9	.0827 .0845
9550.0	69.71	102.238	809.8	6814.3	11.158	6.553	.9129	53.111	2.876	8644.0	.0863
9590.3	70.00	102.669	807.9	6797.9	11.300	6.580	.9176	53.589	2.869	8622.7	.0870
9650.0	70.44	103.309	805.0	6773.5	11.512	6.621	.9245	54.304	2.859	8591.0	.0881
9750.0 9850.0	71.17 71.90	104.379 105.450	794.4 783.8	6684.5 6595.4	11.874 12.243	6.690 6.758	.9362 .9481	55.521 56.767	2.820 2.782	8475.9 8360.7	.0899 .0918
9950.0	72.63	105.430	773.2	6506.2	12.619	6.827	.9401	58.044	2.744	8245.3	.0918
10050.0	73.36	107.591	762.7	6417.2	13.004	6.896	.9724	59.351	2.705	8130.1	.0956
10098.5	73.71	108.113	757.5	6373.7	13.194	6.929	.9784	60.000	2.686	8073.8	.0965
10150.0 10250.0	74.09 74.82	108.661 109.732	752.0 740.7	6328.0 6232.6	13.396 13.796	6.964 7.033	.9848 .9973	60.691 62.064	2.667 2.626	8014.6 7891.1	.0975 .0994
10275.3	75.00	110.002	737.9	6208.5	13.898	7.050	1.0005	62.416	2.615	7860.0	.0999
10350.0	75.55	110.802	729.4	6137.3	14.203	7.101	1.0101	63.472	2.585	7767.8	.1014
10450.0	76.28	111.873	718.0	6041.9	14.619	7.170	1.0231	64.917	2.544	7644.2	.1033
10550.0 10650.0	77.01 77.74	112.944 114.014	706.7 695.4	5946.6 5851.1	15.043 15.475	7.239 7.307	1.0363 1.0497	66.400 67.921	2.502 2.461	7520.7 7397.0	.1053 .1073
10763.0	78.56	115.224	683.8	5753.8	15.972	7.385	1.0651	69.687	2.419	7270.7	.1096
10874.7	79.38	116.420	672.2	5656.4	16.475	7.461	1.0806	71.483	2.377	7144.3	.1119
10960.3	80.00	117.336	663.5	5582.6	16.867	7.520	1.0926	72.893	2.345	7048.4	.1137
10988.0 10999.8	80.20 80.29	117.633 117.758	660.6 659.4	5558.7 5548.4	16.995 17.050	7.539 7.547	1.0966 1.0983	73.355 73.552	2.335 2.331	7017.4 7004.1	.1142 .1145
		inge 1 -> 2		551011	1,.050	/ • • • • •	1.0905	,5,552	21001	,	•=====
				Force	Aero	Rolling	Elapsed	_	Accele		_
RPM	MPH	Velocity ft/sec	Motor Torque	@ Wheel	dynamic Drag - HP	Resist. HP	Time (ET)				Hood Scp Pressure
		IL/Sec	TOLĂne	MILEET	Diag - Hr	nr	(61)	Distance	III G S	Change	FIESSUIE
8458.3	80.29	117.761	851.9	5511.8	17.051	7.547	1.1483	79.426	2.315	0.0	.1145
8550.0	81.16	119.038	851.0	5505.7	17.612	7.629	1.1655	81.458	2.312		.1170
8650.0 8750.0	82.11 83.06	120.431 121.823	849.9 845.8	5499.0 5472.2	18.237 18.877	7.719 7.808	1.1842 1.2030	83.700 85.977	2.309 2.297		.1197 .1225
8850.0	84.01	123.215	841.6	5445.4	19.532	7.808	1.2030	88.291	2.237		.1253
8950.0	84.96	124.607	837.5	5418.6	20.201	7.986	1.2409	90.644	2.273		.1282
8954.5	85.00	124.670	837.3	5417.4	20.232	7.990	1.2417	90.751	2.272	5251.4	.1283
9050.0 9150.0	85.91 86.86	126.000 127.392	833.4 829.2	5391.9 5365.0	20.886 21.586	8.075 8.165	1.2599 1.2791	93.036 95.467	2.261 2.249		.1311 .1340
9250.0	87.81	127.392		5333.8	22.301	8.254	1.2984	97.939	2.235		.1340
9350.0	88.76	130.177	819.5	5302.3	23.033	8.343	1.3179	100.453	2.221	5133.4	.1399
9450.0	89.71	131.569	814.7	5271.1	23.780	8.432	1.3374	103.011	2.208		.1429
9481.0 9550.0	90.00 90.66	132.000 132.961	813.2 809.8	5261.4 5239.8	24.014 24.542	8.460 8.522	1.3435 1.3571	103.812 105.612	2.203 2.194		.1438 .1460
9550.0	90.66 91.60	132.961	809.8	5239.8	24.542	8.522 8.611	1.3571	105.012	2.194	5089.3	.1460
9750.0	92.55	135.746	794.4	5139.9	26.117	8.700	1.3968	110.956	2.150	4968.1	.1521
9850.0	93.50	137.138	783.8	5071.4	26.929	8.789	1.4171	113.722	2.120		.1553
9950.0 10007.8	94.45 95.00	138.530 139.334	773.2 767.1	5002.8 4963.3	27.757 28.243	8.879 8.930	1.4377 1.4497	116.556 118.224	2.090 2.073		.1584 .1603
10007.8	95.00 95.40	139.334	762.7	4963.3	28.603	8.930	1.4497	118.224	2.073	4760.5	.1616
10150.0	96.35	141.315	752.0	4865.8	29.465	9.057	1.4797	122.435	2.030	4691.1	.1649

150 - CARFOR Performance Software by Stan Weiss / World Wide Enterprises

10250.0	97.30	142.707	740.7	4792.4	30.344	9.146	1.5012	125.487	1.998	4617.0	.1681
10350.0	98.25	144.099	729.4	4719.2	31.241	9.235	1.5230	128.618	1.966	4542.9	.1714
10450.0	99.20	145.491	718.0	4645.8	32.156	9.325	1.5452	131.832	1.934	4468.7	.1748
10534.5	100.00	146.668	708.5	4583.9	32.942	9.400	1.5642	134.614	1.907	4406.0	.1776
10550.0	100.15	146.884	706.7	4572.5	33.088	9.414	1.5678	135.131	1.902	4394.5	.1781
10650.0	101.10	148.276	695.4	4499.1	34.037	9.503	1.5907	138.518	1.869	4320.1	.1815
	101.10	149.849	683.8	4424.3	35.132	9.604			1.837		.1854
10763.0							1.6171	142.452		4244.1	
10874.7	103.23	151.405	672.2	4349.4	36.238	9.704	1.6437	146.453	1.804	4168.0	.1893
10988.0	104.31	152.982	660.6	4274.2	37.382	9.805	1.6711	150.628	1.771	4091.6	.1932
10999.8	104.42	153.146	659.4	4266.4	37.502	9.815	1.6740	151.068	1.767	4083.6	.1936
>>>>	Gear Cha	nge 2 ->	3								
				Force	Aero	Rolling	Elapsed		Accele		
RPM	MPH	Velocity	Motor	@	dynamic	Resist.	Time	Total	ration	RPM Rate	Hood Scp
		ft/sec	Torque	Wheel	Drag - HP	HP	(ET)	Distance	in G's	Change	Pressure
			-				. ,			5	
8367.3	104.42	153.146	852.8	4197.3	37.503	9.815	1.7240	158.691	1.737	0.0	.1936
8414.0	105.00	154.002	852.4	4194.9	38.135	9.870	1.7393	161.043	1.736	3051.5	.1958
8450.0	105.45	154.661	852.0	4193.1	38.626	9.912	1.7511	162.864	1.735	3049.6	.1975
8550.0	106.70	156.491	851.0	4188.0	40.014	10.030	1.7839	167.970	1.732	3044.3	.2022
8650.0	107.95	158.321	849.9	4183.0	41.435	10.147	1.8168	173.145	1.729	3039.0	.2069
8750.0	109.19	160.152	845.8	4162.6	42.888	10.264	1.8498	178.400	1.719	3022.0	.2117
8814.8	110.00	161.337	843.1	4149.4	43.847	10.340	1.8713	181.850	1.713	3011.0	.2149
8850.0	110.44	161.982	841.6	4142.2	44.376	10.382	1.8830	183.745	1.710	3005.1	.2166
8950.0	111.69	163.812	837.5	4121.8	45.897	10.499	1.9164	189.181	1.700	2988.0	.2215
9050.0	112.94	165.643	833.4	4101.5	47.453	10.616	1.9499	194.710	1.690	2971.0	.2265
9150.0	114.19	167.473	829.2	4081.0	49.043	10.733	1.9837	200.332	1.680	2954.0	.2316
9215.3	115.00	168.667	826.1	4065.5	50.100	10.810	2.0058	204.052	1.673	2941.1	.2349
9250.0	115.43	169.303	824.4	4057.3	50.669	10.851	2.0176		1.669	2934.3	.2366
								206.051			
9350.0	116.68	171.133	819.5	4033.3	52.330	10.968	2.0518	211.872	1.658	2914.5	.2418
9450.0	117.93	172.964	814.7	4009.6	54.027	11.085	2.0863	217.795	1.647	2894.8	.2470
9550.0	119.18	174.794	809.8	3985.7	55.760	11.203	2.1209	223.823	1.636	2875.0	.2522
9616.0	120.00	176.002	806.6	3970.0	56.924	11.280	2.1439	227.859	1.628	2861.9	.2557
9650.0	120.43	176.624	805.0	3961.9	57.530	11.320	2.1558	229.956	1.624	2855.1	.2575
9750.0	121.67	178.455	794.4	3909.8	59.337	11.437	2.1911	236.220	1.601	2813.8	.2629
9850.0	122.92	180.285	783.8	3857.7	61.182	11.555	2.2269	242.642	1.577	2772.3	.2683
9950.0	124.17	182.115	773.2	3805.5	63.064	11.672	2.2633	249.228	1.553	2730.8	.2738
	125.00	183.337	766.2	3770.8	64.342	11.750	2.2878	253.717	1.538	2703.1	.2775
10050.0	125.42	183.946	762.7	3753.4	64.985	11.789	2.3002	255.982	1.530	2689.3	.2793
10150.0	126.67	185.776	752.0	3701.3	66.944	11.907	2.3376	262.909	1.506	2647.7	.2849
10250.0	127.91	187.606	740.7	3645.5	68.942	12.024	2.3757	270.021	1.481	2603.3	.2906
10350.0	129.16	189.436	729.4	3589.8	70.980	12.141	2.4145	277.325	1.456	2558.8	.2963
10417.3	130.00	190.667	721.8	3552.2	72.373	12.220	2.4409	282.350	1.439	2528.9	.3001
10417.3	130.00 130.41	190.667 191.267	721.8 718.0	3552.2 3533.9	72.373 73.057	12.220 12.258	2.4409 2.4539	282.350 284.830	1.439 1.430		
										2528.9	.3001
10450.0 10550.0	130.41 131.66	191.267 193.097	718.0 706.7	3533.9 3478.2	73.057 75.175	12.258 12.376	2.4539 2.4940	284.830 292.542	1.430 1.405	2528.9 2514.3 2469.7	.3001 .3020 .3078
10450.0 10550.0 10650.0	130.41 131.66 132.91	191.267 193.097 194.927	718.0 706.7 695.4	3533.9 3478.2 3422.4	73.057 75.175 77.333	12.258 12.376 12.493	2.4539 2.4940 2.5349	284.830 292.542 300.470	1.430 1.405 1.380	2528.9 2514.3 2469.7 2425.1	.3001 .3020 .3078 .3137
10450.0 10550.0 10650.0 10763.0	130.41 131.66 132.91 134.32	191.267 193.097 194.927 196.996	718.0 706.7 695.4 683.8	3533.9 3478.2 3422.4 3365.4	73.057 75.175 77.333 79.821	12.258 12.376 12.493 12.626	2.4539 2.4940 2.5349 2.5819	284.830 292.542 300.470 309.689	1.430 1.405 1.380 1.353	2528.9 2514.3 2469.7 2425.1 2379.2	.3001 .3020 .3078 .3137 .3204
10450.0 10550.0 10650.0 10763.0 10817.9	130.41 131.66 132.91 134.32 135.00	191.267 193.097 194.927 196.996 198.000	718.0 706.7 695.4 683.8 678.1	3533.9 3478.2 3422.4 3365.4 3337.5	73.057 75.175 77.333 79.821 81.048	12.258 12.376 12.493 12.626 12.690	2.4539 2.4940 2.5349 2.5819 2.6051	284.830 292.542 300.470 309.689 314.266	1.430 1.405 1.380 1.353 1.341	2528.9 2514.3 2469.7 2425.1 2379.2 2356.7	.3001 .3020 .3078 .3137 .3204 .3237
10450.0 10550.0 10650.0 10763.0 10817.9 10874.7	130.41 131.66 132.91 134.32 135.00 135.71	191.267 193.097 194.927 196.996 198.000 199.040	718.0 706.7 695.4 683.8 678.1 672.2	3533.9 3478.2 3422.4 3365.4 3337.5 3308.5	73.057 75.175 77.333 79.821 81.048 82.332	12.258 12.376 12.493 12.626 12.690 12.757	2.4539 2.4940 2.5349 2.5819 2.6051 2.6294	284.830 292.542 300.470 309.689 314.266 319.078	1.430 1.405 1.380 1.353 1.341 1.327	2528.9 2514.3 2469.7 2425.1 2379.2 2356.7 2333.4	.3001 .3020 .3078 .3137 .3204 .3237 .3271
10450.0 10550.0 10650.0 10763.0 10817.9 10874.7 10988.0	130.41 131.66 132.91 134.32 135.00 135.71 137.12	191.267 193.097 194.927 196.996 198.000 199.040 201.114	718.0 706.7 695.4 683.8 678.1 672.2 660.6	3533.9 3478.2 3422.4 3365.4 3337.5 3308.5 3251.3	73.057 75.175 77.333 79.821 81.048 82.332 84.932	12.258 12.376 12.493 12.626 12.690 12.757 12.890	2.4539 2.4940 2.5349 2.5819 2.6051 2.6294 2.6784	284.830 292.542 300.470 309.689 314.266 319.078 328.889	1.430 1.405 1.380 1.353 1.341 1.327 1.301	2528.9 2514.3 2469.7 2425.1 2379.2 2356.7 2333.4 2287.2	.3001 .3020 .3078 .3137 .3204 .3237 .3271 .3271 .3339
10450.0 10550.0 10650.0 10763.0 10817.9 10874.7 10988.0 10999.8	130.41 131.66 132.91 134.32 135.00 135.71 137.12 137.27	191.267 193.097 194.927 196.996 198.000 199.040 201.114 201.329	718.0 706.7 695.4 683.8 678.1 672.2 660.6 659.4	3533.9 3478.2 3422.4 3365.4 3337.5 3308.5 3251.3	73.057 75.175 77.333 79.821 81.048 82.332	12.258 12.376 12.493 12.626 12.690 12.757	2.4539 2.4940 2.5349 2.5819 2.6051 2.6294	284.830 292.542 300.470 309.689 314.266 319.078	1.430 1.405 1.380 1.353 1.341 1.327 1.301	2528.9 2514.3 2469.7 2425.1 2379.2 2356.7 2333.4	.3001 .3020 .3078 .3137 .3204 .3237 .3271
10450.0 10550.0 10650.0 10763.0 10817.9 10874.7 10988.0 10999.8	130.41 131.66 132.91 134.32 135.00 135.71 137.12 137.27	191.267 193.097 194.927 196.996 198.000 199.040 201.114	718.0 706.7 695.4 683.8 678.1 672.2 660.6 659.4	3533.9 3478.2 3422.4 3365.4 3337.5 3308.5 3251.3 3245.3	73.057 75.175 77.333 79.821 81.048 82.332 84.932 85.205	12.258 12.376 12.493 12.626 12.690 12.757 12.890 12.903	2.4539 2.4940 2.5349 2.5819 2.6051 2.6294 2.6784 2.6835	284.830 292.542 300.470 309.689 314.266 319.078 328.889	1.430 1.405 1.380 1.353 1.341 1.327 1.301 1.298	2528.9 2514.3 2469.7 2425.1 2379.2 2356.7 2333.4 2287.2	.3001 .3020 .3078 .3137 .3204 .3237 .3271 .3271 .3339
10450.0 10550.0 10650.0 10763.0 10817.9 10874.7 10988.0 10999.8	130.41 131.66 132.91 134.32 135.00 135.71 137.12 137.27	191.267 193.097 194.927 196.996 198.000 199.040 201.114 201.329	718.0 706.7 695.4 683.8 678.1 672.2 660.6 659.4	3533.9 3478.2 3422.4 3365.4 3337.5 3308.5 3251.3	73.057 75.175 77.333 79.821 81.048 82.332 84.932	12.258 12.376 12.493 12.626 12.690 12.757 12.890 12.903	2.4539 2.4940 2.5349 2.5819 2.6051 2.6294 2.6784	284.830 292.542 300.470 309.689 314.266 319.078 328.889	1.430 1.405 1.380 1.353 1.341 1.327 1.301	2528.9 2514.3 2469.7 2425.1 2379.2 2356.7 2333.4 2287.2	.3001 .3020 .3078 .3137 .3204 .3237 .3271 .3271 .3339
10450.0 10550.0 10650.0 10763.0 10817.9 10874.7 10988.0 10999.8	130.41 131.66 132.91 134.32 135.00 135.71 137.12 137.27	191.267 193.097 194.927 196.996 198.000 199.040 201.114 201.329	718.0 706.7 695.4 683.8 678.1 672.2 660.6 659.4 4	3533.9 3478.2 3422.4 3365.4 3337.5 3308.5 3251.3 3245.3	73.057 75.175 77.333 79.821 81.048 82.332 84.932 85.205	12.258 12.376 12.493 12.626 12.690 12.757 12.890 12.903	2.4539 2.4940 2.5349 2.5819 2.6051 2.6294 2.6784 2.6835	284.830 292.542 300.470 309.689 314.266 319.078 328.889 329.925	1.430 1.405 1.380 1.353 1.341 1.327 1.301 1.298 Accele	2528.9 2514.3 2469.7 2425.1 2379.2 2356.7 2333.4 2287.2 2282.4	.3001 .3020 .3078 .3137 .3204 .3237 .3271 .3271 .3339
10450.0 10550.0 10650.0 10763.0 10817.9 10874.7 10988.0 10999.8 >>>>	130.41 131.66 132.91 134.32 135.00 135.71 137.12 137.27 Gear Cha	191.267 193.097 194.927 196.996 198.000 199.040 201.114 201.329 nge 3 ->	718.0 706.7 695.4 683.8 678.1 672.2 660.6 659.4 4 Motor	3533.9 3478.2 3422.4 3365.4 3337.5 3208.5 3251.3 3245.3 Force	73.057 75.175 77.333 79.821 81.048 82.332 84.932 85.205 Aero dynamic	12.258 12.376 12.493 12.626 12.690 12.757 12.890 12.903 Rolling	2.4539 2.4940 2.5349 2.5819 2.6051 2.6294 2.6784 2.6835 Elapsed Time	284.830 292.542 300.470 309.689 314.266 319.078 328.889 329.925 Total	1.430 1.405 1.380 1.353 1.341 1.327 1.301 1.298 Accele ration	2528.9 2514.3 2469.7 2425.1 2379.2 2356.7 2333.4 2287.2 2282.4 RPM Rate	.3001 .3020 .3078 .3137 .3204 .3237 .3271 .3339 .3346 Hood Scp
10450.0 10550.0 10650.0 10763.0 10817.9 10874.7 10988.0 10999.8 >>>>	130.41 131.66 132.91 134.32 135.00 135.71 137.12 137.27 Gear Cha	191.267 193.097 194.927 196.996 198.000 199.040 201.114 201.329 nge 3 -> Velocity	718.0 706.7 695.4 683.8 678.1 672.2 660.6 659.4 4	3533.9 3478.2 3422.4 3365.4 3337.5 3308.5 3251.3 3245.3 Force	73.057 75.175 77.333 79.821 81.048 82.332 84.932 85.205 Aero dynamic	12.258 12.376 12.493 12.626 12.690 12.757 12.890 12.903 Rolling Resist.	2.4539 2.4940 2.5349 2.5819 2.6051 2.6294 2.6784 2.6835 Elapsed	284.830 292.542 300.470 309.689 314.266 319.078 328.889 329.925	1.430 1.405 1.380 1.353 1.341 1.327 1.301 1.298 Accele ration	2528.9 2514.3 2469.7 2425.1 2379.2 2356.7 2333.4 2287.2 2282.4 RPM Rate	.3001 .3020 .3078 .3137 .3204 .3237 .3271 .3339 .3346 Hood Scp
10450.0 10550.0 10650.0 10763.0 10817.9 10874.7 10988.0 10999.8 >>>> RPM	130.41 131.66 132.91 134.32 135.00 135.71 137.12 137.27 Gear Cha MPH	191.267 193.097 194.927 196.996 198.000 199.040 201.114 201.329 nge 3 -> Velocity ft/sec	718.0 706.7 695.4 683.8 678.1 672.2 660.6 659.4 4 Motor Torque	3533.9 3478.2 3422.4 3365.4 3337.5 3308.5 3251.3 3245.3 Force @ Wheel	73.057 75.175 77.333 79.821 81.048 82.332 84.932 85.205 Aero dynamic Drag - HP	12.258 12.376 12.493 12.626 12.690 12.757 12.890 12.903 Rolling Resist. HP	2.4539 2.4940 2.5349 2.5819 2.6051 2.6294 2.6784 2.6835 Elapsed Time (ET)	284.830 292.542 300.470 309.689 314.266 319.078 328.889 329.925 Total Distance	1.430 1.405 1.380 1.353 1.341 1.327 1.301 1.298 Accele ration in G's	2528.9 2514.3 2469.7 2425.1 2379.2 2356.7 2333.4 2287.2 2282.4 RPM Rate Change	.3001 .3020 .3078 .3137 .3204 .3237 .3271 .3339 .3346 Hood Scp Pressure
10450.0 10550.0 10650.0 10763.0 10817.9 10874.7 10988.0 10999.8 >>>> RPM 8626.5	130.41 131.66 132.91 134.32 135.00 135.71 137.12 137.27 Gear Cha MPH 137.27	191.267 193.097 194.927 196.996 198.000 199.040 201.114 201.329 nge 3 -> Velocity ft/sec 201.332	718.0 706.7 695.4 683.8 678.1 672.2 660.6 659.4 4 Motor Torque 850.2	3533.9 3478.2 3422.4 3365.4 3337.5 3208.5 3251.3 3245.3 Force @ Wheel 3281.4	73.057 75.175 77.333 79.821 81.048 82.332 84.932 85.205 Aero dynamic Drag - HP 85.209	12.258 12.376 12.493 12.626 12.690 12.757 12.890 12.903 Rolling Resist. HP	2.4539 2.4940 2.5349 2.5819 2.6051 2.6294 2.6784 2.6835 Elapsed Time (ET) 2.7336	284.830 292.542 300.470 309.689 314.266 319.078 328.889 329.925 Total Distance 339.930	1.430 1.405 1.380 1.353 1.341 1.327 1.301 1.298 Accele ration in G's 1.314	2528.9 2514.3 2469.7 2425.1 2379.2 2356.7 2333.4 2287.2 2282.4 RPM Rate Change	.3001 .3020 .3078 .3137 .3204 .3237 .3271 .3339 .3346 Hood Scp Pressure .3346
10450.0 10550.0 10650.0 10763.0 10817.9 10874.7 10988.0 10999.8 >>> RPM 8626.5 8650.0	130.41 131.66 132.91 134.32 135.00 135.71 137.12 137.27 Gear Cha MPH 137.27 137.64	191.267 193.097 194.927 196.996 198.000 199.040 201.114 201.329 nge 3 -> Velocity ft/sec 201.332 201.875	718.0 706.7 695.4 683.8 678.1 672.2 660.6 659.4 4 Motor Torque 850.2 849.9	3533.9 3478.2 3422.4 3365.4 3337.5 3208.5 3251.3 3245.3 Force @ Wheel 3281.4 3280.5	73.057 75.175 77.333 79.821 81.048 82.332 84.932 85.205 Aero dynamic Drag - HP 85.209 85.209	12.258 12.376 12.493 12.626 12.690 12.757 12.890 12.903 Rolling Resist. HP 12.904 12.938	2.4539 2.4940 2.5349 2.5819 2.6051 2.6294 2.6784 2.6835 Elapsed Time (ET) 2.7336 2.7464	284.830 292.542 300.470 309.689 314.266 319.078 328.889 329.925 Total Distance 339.930 342.519	1.430 1.405 1.380 1.353 1.341 1.327 1.301 1.298 Accele ration in G's 1.314 1.313	2528.9 2514.3 2469.7 2425.1 2379.2 2356.7 2333.4 2287.2 2282.4 RPM Rate Change	.3001 .3020 .3078 .3137 .3204 .3237 .3271 .3339 .3346 Hood Scp Pressure .3346 .3364
10450.0 10550.0 10650.0 10763.0 10817.9 10874.7 10988.0 10999.8 >>> RPM 8626.5 8650.0 8750.0	130.41 131.66 132.91 134.32 135.00 135.71 137.12 137.27 Gear Cha MPH 137.27 137.64 139.23	191.267 193.097 194.927 196.996 198.000 199.040 201.114 201.329 nge 3 -> Velocity ft/sec 201.332 201.875 204.208	718.0 706.7 695.4 683.8 678.1 672.2 660.6 659.4 4 Motor Torque 850.2 849.9 845.8	3533.9 3478.2 3422.4 3365.4 3337.5 3208.5 3251.3 3245.3 Force @ Wheel 3281.4 3280.5 3264.5	73.057 75.175 77.333 79.821 81.048 82.332 84.932 85.205 Aero dynamic Drag - HP 85.209 85.899 88.913	12.258 12.376 12.493 12.626 12.690 12.757 12.890 12.903 Rolling Resist. HP 12.904 12.938 13.088	2.4539 2.4940 2.5349 2.5819 2.6051 2.6294 2.6784 2.6835 Elapsed Time (ET) 2.7336 2.7464 2.8019	284.830 292.542 300.470 309.689 314.266 319.078 328.889 329.925 Total Distance 339.930 342.519 353.770	1.430 1.405 1.380 1.353 1.341 1.327 1.301 1.298 Accele ration in G's 1.314 1.313 1.305	2528.9 2514.3 2469.7 2425.1 2379.2 2356.7 2333.4 2287.2 2282.4 RPM Rate Change 0.0 1810.6 1798.8	.3001 .3020 .3078 .3137 .3204 .3237 .3271 .3339 .3346 Hood Scp Pressure .3346 .3364 .3364 .3443
10450.0 10550.0 10650.0 10763.0 10817.9 10874.7 10988.0 10999.8 >>> RPM 8626.5 8650.0 8750.0 8798.3	130.41 131.66 132.91 134.32 135.00 135.71 137.12 137.27 Gear Cha MPH 137.27 137.64 139.23 140.00	191.267 193.097 194.927 196.996 198.000 199.040 201.114 201.329 nge 3 -> Velocity ft/sec 201.332 201.875 204.208 205.334	718.0 706.7 695.4 683.8 678.1 672.2 660.6 659.4 4 Motor Torque 850.2 849.9 845.8 843.8	3533.9 3478.2 3422.4 3365.4 3308.5 3251.3 3245.3 Force @ Wheel 3281.4 3280.5 3264.5 3256.8	73.057 75.175 77.333 79.821 81.048 82.332 84.932 85.205 Aero dynamic Drag - HP 85.209 85.899 85.899 88.913 90.392	12.258 12.376 12.493 12.626 12.690 12.757 12.890 12.903 Rolling Resist. HP 12.904 12.938 13.088 13.160	2.4539 2.4940 2.5349 2.5819 2.6051 2.6294 2.6784 2.6835 Elapsed Time (ET) 2.7336 2.7464 2.8019 2.8287	284.830 292.542 300.470 309.689 314.266 319.078 328.889 329.925 Total Distance 339.930 342.519 353.770 359.271	1.430 1.405 1.380 1.353 1.341 1.327 1.301 1.298 Accele ration in G's 1.314 1.313 1.305 1.301	2528.9 2514.3 2469.7 2425.1 2379.2 2356.7 2333.4 2287.2 2282.4 RPM Rate Change 0.0 1810.6 1798.8 1793.1	.3001 .3020 .3078 .3137 .3204 .3237 .3271 .3339 .3346 Hood Scp Pressure .3346 .3364 .3443 .3481
10450.0 10550.0 10650.0 10763.0 10874.7 10988.0 10999.8 >>>> RPM 8626.5 8650.0 8750.0 8750.0 8798.3 8850.0	130.41 131.66 132.91 134.32 135.00 135.71 137.12 137.27 Gear Cha MPH 137.27 137.64 139.23 140.00 140.82	191.267 193.097 194.927 196.996 198.000 199.040 201.114 201.329 nge 3 -> Velocity ft/sec 201.332 201.875 204.208 205.334 206.542	718.0 706.7 695.4 683.8 678.1 672.2 660.6 659.4 4 Motor Torque 850.2 849.9 845.8 843.8 841.6	3533.9 3478.2 3422.4 3365.4 3308.5 3251.3 3245.3 Force @ Wheel 3281.4 3280.5 3264.5 3256.8 3248.5	73.057 75.175 77.333 79.821 81.048 82.332 84.932 85.205 Aero dynamic Drag - HP 85.209 85.899 85.899 88.913 90.392 91.996	12.258 12.376 12.493 12.626 12.690 12.757 12.890 12.903 Rolling Resist. HP 12.904 12.938 13.088 13.160 13.237	2.4539 2.4940 2.5349 2.5819 2.6051 2.6294 2.6784 2.6835 Elapsed Time (ET) 2.7336 2.7464 2.8019 2.8287 2.8576	284.830 292.542 300.470 309.689 314.266 319.078 328.889 329.925 Total Distance 339.930 342.519 353.770 359.271 365.225	1.430 1.405 1.380 1.353 1.341 1.327 1.301 1.298 Accele ration in G's 1.314 1.313 1.305 1.301 1.296	2528.9 2514.3 2469.7 2425.1 2379.2 2356.7 2333.4 2282.4 RPM Rate Change 0.0 1810.6 1798.8 1793.1 1787.0	.3001 .3020 .3078 .3137 .3204 .3237 .3271 .3339 .3346 Hood Scp Pressure .3346 .3364 .3443 .3481 .3522
10450.0 10550.0 10650.0 10817.9 10874.7 10988.0 10999.8 >>>> RPM 8626.5 8650.0 8750.0 8798.3 8850.0 8950.0	130.41 131.66 132.91 134.32 135.00 135.71 137.12 137.27 Gear Cha MPH 137.27 137.64 139.23 140.00 140.82 142.42	191.267 193.097 194.927 196.996 198.000 199.040 201.114 201.329 nge 3 -> Velocity ft/sec 201.332 201.875 204.208 205.334 206.542 208.876	718.0 706.7 695.4 683.8 678.1 672.2 660.6 659.4 4 Motor Torque 850.2 849.9 845.8 843.8 841.6 837.5	3533.9 3478.2 3422.4 3365.4 3337.5 3251.3 3245.3 Force @ Wheel 3281.4 3281.4 3280.5 3264.5 3264.5 3256.8 3248.5 3232.5	73.057 75.175 77.333 79.821 81.048 82.332 84.932 85.205 Aero dynamic Drag - HP 85.209 85.899 85.899 88.913 90.392 91.996 95.150	12.258 12.376 12.493 12.626 12.690 12.757 12.890 12.903 Rolling Resist. HP 12.904 12.938 13.088 13.160 13.237 13.387	2.4539 2.4940 2.5349 2.5819 2.6051 2.6294 2.6835 Elapsed Time (ET) 2.7336 2.7464 2.8019 2.8287 2.8576 2.9138	284.830 292.542 300.470 309.689 314.266 319.078 328.889 329.925 Total Distance 339.930 342.519 353.770 359.271 365.225 376.887	1.430 1.405 1.380 1.353 1.341 1.298 Accele ration in G's 1.314 1.313 1.305 1.301 1.296 1.288	2528.9 2514.3 2469.7 2425.1 2379.2 2356.7 2333.4 2287.2 2282.4 RPM Rate Change 0.0 1810.6 1798.8 1793.1 1787.0 1775.2	.3001 .3020 .3078 .3137 .3204 .3237 .3271 .3339 .3346 Hood Scp Pressure .3346 .3364 .3443 .3481 .3522 .3602
10450.0 10550.0 10650.0 10763.0 10817.9 10874.7 10988.0 10999.8 >>>> RPM 8626.5 8650.0 8750.0 8750.0 8758.3 8850.0 8950.0	130.41 131.66 132.91 134.32 135.00 135.71 137.12 137.27 Gear Cha MPH 137.27 137.64 139.23 140.00 140.82	191.267 193.097 194.927 196.996 198.000 199.040 201.114 201.329 nge 3 -> Velocity ft/sec 201.332 201.875 204.208 205.334 206.542	718.0 706.7 695.4 683.8 678.1 672.2 660.6 659.4 4 Motor Torque 850.2 849.9 845.8 843.8 843.8 841.6 837.5 833.4	3533.9 3478.2 3422.4 3365.4 3308.5 3251.3 3245.3 Force @ Wheel 3281.4 3280.5 3264.5 3256.8 3248.5	73.057 75.175 77.333 79.821 81.048 82.332 84.932 85.205 Aero dynamic Drag - HP 85.209 85.899 85.899 88.913 90.392 91.996	12.258 12.376 12.493 12.626 12.690 12.757 12.890 12.903 Rolling Resist. HP 12.904 12.938 13.088 13.160 13.237	2.4539 2.4940 2.5349 2.5819 2.6051 2.6294 2.6784 2.6835 Elapsed Time (ET) 2.7336 2.7464 2.8019 2.8287 2.8576	284.830 292.542 300.470 309.689 314.266 319.078 328.889 329.925 Total Distance 339.930 342.519 353.770 359.271 365.225	1.430 1.405 1.380 1.353 1.341 1.327 1.301 1.298 Accele ration in G's 1.314 1.313 1.305 1.301 1.296 1.288 1.279	2528.9 2514.3 2469.7 2425.1 2379.2 2356.7 2333.4 2287.2 2282.4 RPM Rate Change 0.0 1810.6 1798.8 1793.1 1787.0 1775.2 1763.3	.3001 .3020 .3078 .3137 .3204 .3237 .3271 .3339 .3346 Hood Scp Pressure .3346 .3364 .3443 .3481 .3522
10450.0 10550.0 10650.0 10763.0 10817.9 10874.7 10988.0 10999.8 >>>> RPM 8626.5 8650.0 8750.0 8750.0 8798.3 8850.0 8950.0	130.41 131.66 132.91 134.32 135.00 135.71 137.12 137.27 Gear Cha MPH 137.27 137.64 139.23 140.00 140.82 142.42	191.267 193.097 194.927 196.996 198.000 199.040 201.114 201.329 nge 3 -> Velocity ft/sec 201.332 201.875 204.208 205.334 206.542 208.876	718.0 706.7 695.4 683.8 678.1 672.2 660.6 659.4 4 Motor Torque 850.2 849.9 845.8 843.8 841.6 837.5	3533.9 3478.2 3422.4 3365.4 3337.5 3251.3 3245.3 Force @ Wheel 3281.4 3281.4 3280.5 3264.5 3264.5 3256.8 3248.5 3232.5	73.057 75.175 77.333 79.821 81.048 82.332 84.932 85.205 Aero dynamic Drag - HP 85.209 85.899 85.899 88.913 90.392 91.996 95.150	12.258 12.376 12.493 12.626 12.690 12.757 12.890 12.903 Rolling Resist. HP 12.904 12.938 13.088 13.160 13.237 13.387	2.4539 2.4940 2.5349 2.5819 2.6051 2.6294 2.6835 Elapsed Time (ET) 2.7336 2.7464 2.8019 2.8287 2.8576 2.9138	284.830 292.542 300.470 309.689 314.266 319.078 328.889 329.925 Total Distance 339.930 342.519 353.770 359.271 365.225 376.887	1.430 1.405 1.380 1.353 1.341 1.298 Accele ration in G's 1.314 1.313 1.305 1.301 1.296 1.288	2528.9 2514.3 2469.7 2425.1 2379.2 2356.7 2333.4 2287.2 2282.4 RPM Rate Change 0.0 1810.6 1798.8 1793.1 1787.0 1775.2 1763.3	.3001 .3020 .3078 .3137 .3204 .3237 .3271 .3339 .3346 Hood Scp Pressure .3346 .3364 .3443 .3481 .3522 .3602
10450.0 10550.0 10650.0 10763.0 10817.9 10874.7 10988.0 10999.8 >>>> RPM 8626.5 8650.0 8750.0 8750.0 8758.3 8850.0 8950.0	130.41 131.66 132.91 134.32 135.00 135.71 137.12 137.27 Gear Cha MPH 137.27 137.64 139.23 140.00 140.82 142.42 144.01	191.267 193.097 194.927 196.996 198.000 199.040 201.114 201.329 nge 3 -> Velocity ft/sec 201.332 201.875 204.208 205.334 206.542 208.876 211.210	718.0 706.7 695.4 683.8 678.1 672.2 660.6 659.4 4 Motor Torque 850.2 849.9 845.8 843.8 843.8 841.6 837.5 833.4	3533.9 3478.2 3422.4 3365.4 3337.5 3251.3 3245.3 Force @ Wheel 3281.4 3280.5 3264.5 3256.8 3248.5 3225.8	73.057 75.175 77.333 79.821 81.048 82.332 84.932 85.205 Aero dynamic Drag - HP 85.209 85.899 85.899 88.913 90.392 91.996 95.150 98.376	12.258 12.376 12.493 12.626 12.690 12.757 12.890 12.903 Rolling Resist. HP 12.904 12.938 13.088 13.160 13.237 13.387 13.537	2.4539 2.4940 2.5349 2.5819 2.6051 2.6294 2.6835 Elapsed Time (ET) 2.7336 2.7464 2.8019 2.8287 2.8576 2.9138 2.9703	284.830 292.542 300.470 309.689 314.266 319.078 328.889 329.925 Total Distance 339.930 342.519 353.770 359.271 365.225 376.887 388.759	1.430 1.405 1.380 1.353 1.341 1.327 1.301 1.298 Accele ration in G's 1.314 1.313 1.305 1.301 1.296 1.288 1.279	2528.9 2514.3 2469.7 2425.1 2379.2 2356.7 2333.4 2287.2 2282.4 RPM Rate Change 0.0 1810.6 1798.8 1793.1 1787.0 1775.2 1763.3 1755.9	.3001 .3020 .3078 .3137 .3204 .3237 .3271 .3339 .3346 Hood Scp Pressure .3346 .3443 .3443 .3443 .3481 .3522 .3602 .3683
10450.0 10550.0 10650.0 10817.9 10874.7 10988.0 10999.8 >>> RPM 8626.5 8650.0 8750.0 8750.0 8750.0 8950.0 9050.0 9112.5	130.41 131.66 132.91 134.32 135.00 135.71 137.12 137.27 Gear Cha MPH 137.27 137.64 139.23 140.00 140.82 142.42 144.01 145.00	191.267 193.097 194.927 196.996 198.000 201.114 201.329 nge 3 -> Velocity ft/sec 201.332 201.875 204.208 205.334 206.542 208.876 211.210 212.668	718.0 706.7 695.4 683.8 678.1 672.2 660.6 659.4 4 4 Motor Torque 850.2 849.9 845.8 841.6 837.5 833.4 830.8	3533.9 3478.2 3422.4 3365.4 3337.5 3251.3 3245.3 Force @ Wheel 3281.4 3280.5 3264.5 3256.8 3248.5 3226.6 3226.6	73.057 75.175 77.333 79.821 81.048 82.332 84.932 85.205 Aero dynamic Drag - HP 85.209 85.899 88.913 90.392 91.996 95.150 98.376 100.428	12.258 12.376 12.493 12.626 12.690 12.757 12.890 12.903 Rolling Resist. HP 12.904 12.938 13.088 13.160 13.237 13.387 13.537 13.630	2.4539 2.4940 2.5349 2.5819 2.6051 2.6294 2.6784 2.6835 Elapsed Time (ET) 2.7336 2.7464 2.8019 2.8287 2.8576 2.9138 2.9703 3.0058 3.0272	284.830 292.542 300.470 309.689 314.266 319.078 328.889 329.925 Total Distance 339.930 342.519 353.770 359.271 365.225 376.887 388.759 396.287	1.430 1.405 1.380 1.353 1.341 1.327 1.301 1.298 Accele ration in G's 1.314 1.313 1.305 1.301 1.296 1.288 1.279 1.274	2528.9 2514.3 2469.7 2425.1 2379.2 2356.7 2333.4 2287.2 2282.4 RPM Rate Change 0.0 1810.6 1798.8 1793.1 1787.0 1775.2 1763.3 1755.9 1751.4	.3001 .3020 .3078 .3137 .3204 .3237 .3271 .3339 .3346 Hood Scp Pressure .3346 .3464 .3443 .3481 .3522 .3602 .3683 .3734 .3765
10450.0 10550.0 10650.0 10817.9 10874.7 10988.0 10999.8 >>> RPM 8626.5 8650.0 8750.0 8750.0 8950.0 9050.0 9112.5 9150.0	130.41 131.66 132.91 134.32 135.00 135.71 137.12 137.27 137.64 139.23 140.00 140.82 142.42 144.01 145.00 145.60 147.19	191.267 193.097 194.927 196.996 198.000 201.114 201.329 nge 3 -> Velocity ft/sec 201.332 201.875 204.208 205.334 206.542 208.876 211.210 212.668 213.544 215.877	718.0 706.7 695.4 683.8 678.1 672.2 660.6 659.4 4 Motor Torque 850.2 849.9 845.8 843.8 841.6 837.5 833.4 830.8 829.2 824.4	3533.9 3478.2 3422.4 3365.4 3337.5 3208.5 3251.3 3245.3 Force @ Wheel 3281.4 3280.5 3264.5 3264.5 3256.8 3248.5 3225.8 3216.6 3206.6 3200.6 3181.9	73.057 75.175 77.333 79.821 81.048 82.332 84.932 85.205 Aero dynamic Drag - HP 85.209 85.899 88.913 90.392 91.996 95.150 98.376 100.428 101.673 105.043	12.258 12.376 12.493 12.626 12.690 12.757 12.890 12.903 Rolling Resist. HP 12.904 12.938 13.088 13.160 13.237 13.387 13.537 13.630 13.686 13.836	2.4539 2.4940 2.5349 2.5819 2.6051 2.6294 2.6784 2.6835 Elapsed Time (ET) 2.7336 2.7464 2.8019 2.8287 2.8287 2.8576 2.9138 2.9138 2.9703 3.0058 3.0272 3.0845	284.830 292.542 300.470 309.689 314.266 319.078 328.889 329.925 Total Distance 339.930 342.519 353.770 359.271 365.225 376.887 388.759 396.287 400.844 413.151	1.430 1.405 1.380 1.353 1.341 1.327 1.301 1.298 Accele ration in G's 1.314 1.313 1.305 1.301 1.296 1.288 1.279 1.274 1.270 1.261	2528.9 2514.3 2469.7 2425.1 2379.2 2356.7 2333.4 2287.2 2282.4 RPM Rate Change 0.0 1810.6 1798.8 1793.1 1787.0 1775.2 1763.3 1755.9 1751.4 1737.8	.3001 .3020 .3078 .3137 .3204 .3237 .3271 .3339 .3346 .3346 .3346 .3364 .3443 .3481 .3522 .3602 .3683 .3734 .3765 .3847
10450.0 10550.0 10650.0 10763.0 10817.9 10874.7 10988.0 10999.8 >>>> RPM 8626.5 8650.0 8750.0 8750.0 8798.3 8850.0 8950.0 9050.0 9112.5 9150.0 9250.0 9350.0	130.41 131.66 132.91 134.32 135.00 135.71 137.12 137.27 Gear Cha MPH 137.27 137.64 139.23 140.00 140.82 142.42 144.01 145.00 145.60 147.19 148.78	191.267 193.097 194.927 196.996 198.000 199.040 201.114 201.329 nge 3 -> Velocity ft/sec 201.332 201.875 204.208 205.334 206.542 208.876 211.210 212.668 213.544 215.877 218.211	718.0 706.7 695.4 683.8 678.1 672.2 660.6 659.4 4 Motor Torque 850.2 849.9 845.8 843.8 841.6 837.5 833.4 830.8 829.2 824.4 819.5	3533.9 3478.2 3422.4 3365.4 3308.5 3251.3 3245.3 Force @ Wheel 3281.4 3280.5 3264.5 3256.8 3248.5 3256.8 3248.5 3216.6 3206.6 3200.6 3181.9 3163.2	73.057 75.175 77.333 79.821 81.048 82.332 84.932 85.205 Aero dynamic Drag - HP 85.209 85.899 88.913 90.392 91.996 95.150 98.376 100.428 101.673 105.043 108.487	12.258 12.376 12.493 12.626 12.690 12.757 12.890 12.903 Rolling Resist. HP 12.904 12.938 13.088 13.160 13.237 13.387 13.537 13.630 13.636 13.836 13.985	2.4539 2.4940 2.5349 2.5819 2.6051 2.6294 2.6784 2.6835 Elapsed Time (ET) 2.7336 2.7464 2.8019 2.8287 2.8576 2.9138 2.9703 3.0058 3.0272 3.0845 3.1423	284.830 292.542 300.470 309.689 314.266 319.078 328.889 329.925 Total Distance 339.930 342.519 353.770 359.271 365.225 376.887 388.759 396.287 400.844 413.151 425.690	1.430 1.405 1.380 1.353 1.341 1.298 Accele ration in G's 1.314 1.313 1.305 1.301 1.296 1.288 1.279 1.274 1.271 1.261 1.251	2528.9 2514.3 2469.7 2425.1 2379.2 2356.7 2333.4 2287.2 2282.4 RPM Rate Change 0.0 1810.6 1798.8 1793.1 1787.0 1775.2 1763.3 1755.9 1751.4 1737.8 1724.2	.3001 .3020 .3078 .3137 .3204 .3237 .3271 .3339 .3346 .3346 .3346 .3364 .3443 .3481 .3522 .3602 .3683 .3734 .3765 .3847 .3931
10450.0 10550.0 10650.0 10763.0 10817.9 10874.7 10988.0 10999.8 >>>> RPM 8626.5 8650.0 8750.0 8750.0 8750.0 9050.0 9112.5 9150.0 9250.0 9350.0 9426.8	130.41 131.66 132.91 134.32 135.00 135.71 137.12 137.27 Gear Cha MPH 137.27 137.64 139.23 140.00 140.82 142.42 144.01 145.00 145.60 147.19 148.78 150.00	191.267 193.097 194.927 196.996 198.000 199.040 201.114 201.329 nge 3 -> Velocity ft/sec 201.332 201.875 204.208 205.334 206.542 208.876 211.210 212.668 213.544 215.877 218.211 220.002	718.0 706.7 695.4 683.8 678.1 672.2 660.6 659.4 4 Motor Torque 850.2 849.9 845.8 843.8 841.6 837.5 833.4 830.8 829.2 829.2 829.2 815.8	3533.9 3478.2 3422.4 3365.4 3308.5 3251.3 3245.3 Force @ Wheel 3281.4 3280.5 3264.5 3264.5 3256.8 3248.5 3216.6 3206.6 3200.6 3181.9 3163.2 3148.9	73.057 75.175 77.333 79.821 81.048 82.332 84.932 85.205 Aero dynamic Drag - HP 85.209 85.899 88.913 90.392 91.996 95.150 98.376 100.428 101.673 105.043 108.487 111.180	12.258 12.376 12.493 12.626 12.690 12.757 12.890 12.903 Rolling Resist. HP 12.904 12.938 13.088 13.160 13.237 13.387 13.537 13.630 13.686 13.985 14.100	2.4539 2.4940 2.5349 2.5819 2.6051 2.6294 2.6784 2.6835 Elapsed Time (ET) 2.7336 2.7464 2.8019 2.8287 2.8576 2.9138 2.9703 3.0058 3.0272 3.0845 3.1423 3.1869	284.830 292.542 300.470 309.689 314.266 319.078 328.889 329.925 Total Distance 339.930 342.519 353.770 359.271 365.225 376.887 388.759 396.287 400.844 413.151 425.690 435.473	1.430 1.405 1.380 1.353 1.341 1.298 Accele ration in G's 1.314 1.313 1.305 1.301 1.296 1.288 1.279 1.274 1.270 1.261 1.251 1.243	2528.9 2514.3 2469.7 2425.1 2379.2 2356.7 2333.4 2287.2 2282.4 RPM Rate Change 0.0 1810.6 1798.8 1793.1 1787.0 1775.2 1763.3 1755.9 1751.4 1737.8 1724.2 1713.7	.3001 .3020 .3078 .3137 .3204 .3237 .3271 .3339 .3346 Hood Scp Pressure .3346 .3364 .3443 .3481 .3522 .3602 .3683 .3734 .3765 .3847 .3931 .3996
10450.0 10550.0 10650.0 10817.9 10874.7 10988.0 10999.8 >>>> RPM 8626.5 8650.0 8750.0 8750.0 8750.0 9050.0 9112.5 9150.0 9250.0 9350.0 9426.8 9450.0	130.41 131.66 132.91 134.32 135.00 135.71 137.12 137.27 Gear Cha MPH 137.27 137.64 139.23 140.00 140.82 142.42 144.01 145.60 147.19 148.78 150.00 150.37	191.267 193.097 194.927 196.996 198.000 199.040 201.114 201.329 nge 3 -> Velocity ft/sec 201.332 201.875 204.208 205.334 206.542 208.876 211.210 212.668 213.544 215.877 218.211 220.002 220.545	718.0 706.7 695.4 683.8 678.1 672.2 660.6 659.4 4 Motor Torque 850.2 849.9 845.8 843.8 841.6 837.5 833.4 830.8 829.2 824.4 819.5 815.8 814.7	3533.9 3478.2 3422.4 3365.4 3337.5 3208.5 3251.3 3245.3 Force @ Wheel 3281.4 3280.5 3264.5 3264.5 3256.8 3248.5 3226.6 3206.6 3206.6 3206.6 3200.6 3181.9 3163.2 3148.9 3144.5	73.057 75.175 77.333 79.821 81.048 82.332 84.932 85.205 Aero dynamic Drag - HP 85.209 85.899 88.913 90.392 91.996 95.150 98.376 100.428 101.673 105.043 108.487 111.180 112.005	12.258 12.376 12.493 12.626 12.690 12.757 12.890 12.903 Rolling Resist. HP 12.904 12.938 13.088 13.160 13.237 13.387 13.537 13.630 13.636 13.836 13.836 13.835 14.100 14.135	2.4539 2.4940 2.5349 2.5819 2.6051 2.6294 2.6784 2.6835 Elapsed Time (ET) 2.7336 2.7464 2.8019 2.8287 2.8576 2.9138 2.9703 3.0058 3.0272 3.0845 3.1423 3.1869 3.2005	284.830 292.542 300.470 309.689 314.266 319.078 328.889 329.925 Total Distance 339.930 342.519 353.770 359.271 365.225 376.887 388.759 396.287 400.844 413.151 425.690 435.473 438.464	1.430 1.405 1.380 1.353 1.341 1.298 Accele ration in G's 1.314 1.313 1.305 1.301 1.296 1.288 1.279 1.274 1.270 1.261 1.243 1.241	2528.9 2514.3 2469.7 2425.1 2379.2 2356.7 2333.4 2282.4 RPM Rate Change 0.0 1810.6 1798.8 1793.1 1787.0 1775.2 1763.3 1755.9 1751.4 1737.8 1724.2 1713.7 1710.6	.3001 .3020 .3078 .3137 .3204 .3237 .3271 .3339 .3346 Hood Scp Pressure .3346 .3443 .3443 .3443 .3481 .3522 .3602 .3683 .3734 .3765 .3847 .3996 .4016
10450.0 10550.0 10650.0 10817.9 10874.7 10988.0 10999.8 >>>> RPM 8626.5 8650.0 8750.0 8750.0 8798.3 8850.0 9050.0 9112.5 9150.0 9250.0 9426.8 9450.0	130.41 131.66 132.91 134.32 135.00 135.71 137.12 137.27 Gear Cha MPH 137.27 137.64 139.23 140.00 140.82 142.42 144.01 145.00 145.60 145.60 145.60 145.60 145.60 145.60 150.37 151.96	191.267 193.097 194.927 196.996 198.000 199.040 201.114 201.329 nge 3 -> Velocity ft/sec 201.332 201.875 204.208 205.334 206.542 208.876 211.210 212.668 213.544 215.877 218.211 220.002 220.545 222.879	718.0 706.7 695.4 683.8 678.1 672.2 660.6 659.4 4 4 Motor Torque 850.2 849.9 845.8 843.8 843.8 841.6 837.5 833.4 829.2 824.4 819.5 815.8 814.7 809.8	3533.9 3478.2 3422.4 3365.4 3337.5 3251.3 3245.3 Force @ Wheel 3281.4 3280.5 3264.5 3264.5 3226.8 3248.5 3226.8 3248.5 3226.6 3200.6 3200.6 3181.9 3163.2 3148.9 3144.5 3125.8	73.057 75.175 77.333 79.821 81.048 82.332 85.205 Aero dynamic Drag - HP 85.209 85.899 85.899 85.899 85.913 90.392 91.996 95.150 98.376 100.428 101.673 105.043 105.043 108.487 111.180 112.005 115.598	12.258 12.376 12.493 12.626 12.690 12.757 12.890 12.903 Rolling Resist. HP 12.904 12.938 13.088 13.160 13.237 13.387 13.537 13.630 13.686 13.836 13.836 13.835 14.100 14.135 14.285	2.4539 2.4940 2.5349 2.5819 2.6051 2.6294 2.6784 2.6835 Elapsed Time (ET) 2.7336 2.7464 2.8019 2.8287 2.8576 2.9138 2.9703 3.0058 3.0272 3.0845 3.1423 3.1869 3.2005 3.2592	284.830 292.542 300.470 309.689 314.266 319.078 328.889 329.925 Total Distance 339.930 342.519 353.770 359.271 365.225 376.887 388.759 396.287 400.844 413.151 425.690 435.473 438.464 451.478	1.430 1.405 1.380 1.353 1.341 1.327 1.301 1.298 Accele ration in G's 1.314 1.313 1.305 1.301 1.296 1.288 1.279 1.274 1.270 1.261 1.251 1.243 1.241 1.231	2528.9 2514.3 2469.7 2425.1 2379.2 2356.7 2333.4 2287.2 2282.4 RPM Rate Change 0.0 1810.6 1798.8 1793.1 1787.0 1775.2 1763.3 1755.9 1751.4 1737.8 1724.2 1713.7 1710.6 1696.9	.3001 .3020 .3078 .3137 .3204 .3237 .3271 .3339 .3346 Hood Scp Pressure .3346 .3443 .3481 .3522 .3602 .3683 .3734 .3765 .3847 .3931 .3996 .4016 .4101
10450.0 10550.0 10650.0 10763.0 10817.9 10874.7 10988.0 10999.8 >>>> RPM 8626.5 8650.0 8750.0 8750.0 8750.0 9050.0 9112.5 9150.0 9250.0 9426.8 9450.0 9550.0	130.41 131.66 132.91 134.32 135.00 135.71 137.12 137.27 Gear Cha MPH 137.27 137.64 139.23 140.00 140.82 142.42 144.01 145.00 145.60 145.60 145.60 145.78 150.00 150.37 151.96 153.55	191.267 193.097 194.927 196.996 198.000 201.114 201.329 nge 3 -> Velocity ft/sec 201.332 201.875 204.208 205.334 206.542 208.876 211.210 212.668 213.544 213.544 215.877 218.211 220.002 220.545 222.879 225.213	718.0 706.7 695.4 683.8 678.1 672.2 660.6 659.4 4 4 Motor Torque 850.2 849.9 845.8 843.8 841.6 837.5 833.4 829.2 824.4 819.5 815.8 815.8 815.8	3533.9 3478.2 3422.4 3365.4 3337.5 3251.3 3245.3 Force @ Wheel 3281.4 3280.5 3264.5 3226.8 3248.5 3226.6 3206.6 3206.6 3200.6 3181.9 3163.2 3148.9 3144.5 3125.8 3107.1	73.057 75.175 77.333 79.821 81.048 82.332 84.932 85.205 Aero dynamic Drag - HP 85.209 85.899 85.899 85.899 88.913 90.392 91.996 95.150 98.376 100.428 101.673 105.043 105.043 108.487 111.180 112.005 115.598 119.268	12.258 12.376 12.493 12.626 12.690 12.757 12.890 12.903 Rolling Resist. HP 12.904 12.938 13.088 13.160 13.237 13.387 13.537 13.630 13.686 13.836 13.836 13.836 13.985 14.100 14.135 14.285 14.434	2.4539 2.4940 2.5349 2.5819 2.6051 2.6294 2.6835 Elapsed Time (ET) 2.7336 2.7464 2.8019 2.8287 2.8576 2.9138 2.9703 3.0058 3.0272 3.0845 3.1423 3.1869 3.2005 3.2592 3.3184	284.830 292.542 300.470 309.689 314.266 319.078 328.889 329.925 Total Distance 339.930 342.519 353.770 359.271 365.225 376.887 388.759 396.287 400.844 413.151 425.690 435.473 438.464 451.478 464.735	1.430 1.405 1.380 1.353 1.341 1.327 1.301 1.298 Accele ration in G's 1.314 1.313 1.305 1.301 1.296 1.288 1.279 1.274 1.270 1.261 1.251 1.243 1.241 1.231 1.221	2528.9 2514.3 2469.7 2425.1 2379.2 2356.7 2333.4 2287.2 2282.4 RPM Rate Change 0.0 1810.6 1798.8 1793.1 1787.0 1775.2 1763.3 1755.9 1751.4 1737.8 1724.2 1713.7 1710.6 1696.9 1683.2	.3001 .3020 .3078 .3137 .3204 .3237 .3271 .3339 .3346 Hood Scp Pressure .3346 .3443 .3443 .3443 .3443 .3443 .3443 .3443 .3443 .3443 .3443 .3461 .3443 .3765 .3847 .3931 .3996 .4016 .4101 .4187
10450.0 10550.0 10650.0 10763.0 10817.9 10874.7 10988.0 10999.8 >>>> RPM 8626.5 8650.0 8750.0 8750.0 8750.0 9050.0 9112.5 9150.0 9250.0 9426.8 9450.0 9550.0 9550.0 9550.0	130.41 131.66 132.91 134.32 135.00 135.71 137.12 137.27 Gear Cha MPH 137.27 137.64 139.23 140.00 140.82 142.42 144.01 145.00 145.60 147.19 148.78 150.00 150.37 151.96 153.55 155.00	191.267 193.097 194.927 196.996 198.000 201.114 201.329 nge 3 -> Velocity ft/sec 201.332 201.875 204.208 205.334 206.542 208.876 211.210 212.668 213.544 213.544 215.877 218.211 220.002 220.545 222.879 225.213 227.336	718.0 706.7 695.4 683.8 678.1 672.2 660.6 659.4 4 4 Motor Torque 850.2 849.9 845.8 843.8 841.6 837.5 833.4 829.2 824.4 819.5 815.8 814.7 809.8 805.0 795.4	3533.9 3478.2 3422.4 3365.4 3337.5 3251.3 3245.3 Force @ Wheel 3281.4 3280.5 3264.5 3226.8 3248.5 3226.6 3206.6 3200.6 3181.9 3163.2 3148.9 3144.5 3125.8 3107.1 3070.0	73.057 75.175 77.333 79.821 81.048 82.332 84.932 85.205 Aero dynamic Drag - HP 85.209 85.899 85.899 88.913 90.392 91.996 95.150 98.376 100.428 101.673 105.043 105.043 108.487 111.180 112.005 115.598 119.268 122.674	12.258 12.376 12.493 12.626 12.690 12.757 12.890 12.903 Rolling Resist. HP 12.904 12.938 13.088 13.160 13.237 13.387 13.537 13.630 13.630 13.686 13.836 13.985 14.100 14.135 14.285 14.434 14.570	2.4539 2.4940 2.5349 2.5819 2.6051 2.6294 2.6784 2.6835 Elapsed Time (ET) 2.7336 2.7366 2.7464 2.8019 2.8287 2.8576 2.9138 2.9703 3.0058 3.0272 3.0845 3.1423 3.1869 3.2005 3.2592 3.3184 3.3729	284.830 292.542 300.470 309.689 314.266 319.078 328.889 329.925 Total Distance 339.930 342.519 353.770 359.271 365.225 376.887 388.759 396.287 400.844 413.151 425.690 435.473 438.464 451.478 464.735 477.060	1.430 1.405 1.380 1.353 1.341 1.327 1.301 1.298 Accele ration in G's 1.314 1.313 1.305 1.301 1.296 1.288 1.279 1.274 1.270 1.261 1.251 1.243 1.241 1.221 1.221 1.203	2528.9 2514.3 2469.7 2425.1 2379.2 2356.7 2333.4 2287.2 2282.4 RPM Rate Change 0.0 1810.6 1798.8 1793.1 1787.0 1775.2 1763.3 1755.9 1751.4 1737.8 1724.2 1713.7 1710.6 1696.9 1683.2 1658.5	.3001 .3020 .3078 .3137 .3204 .3237 .3271 .3339 .3346 Hood Scp Pressure .3346 .3443 .3443 .3443 .3443 .3443 .3443 .3443 .3443 .3522 .3602 .3683 .3734 .3765 .3847 .3931 .3996 .4016 .4101 .4187 .4267
10450.0 10550.0 10650.0 10763.0 10817.9 10874.7 10988.0 10999.8 >>>> RPM 8626.5 8650.0 8750.0 8750.0 8750.0 9050.0 9112.5 9150.0 9250.0 9426.8 9450.0 9550.0 9550.0 9550.0	130.41 131.66 132.91 134.32 135.00 135.71 137.12 137.27 Gear Cha MPH 137.27 137.64 139.23 140.00 140.82 142.42 144.01 145.00 145.60 145.60 145.60 147.19 148.78 150.00 150.37 151.96 153.55 155.00 155.15	191.267 193.097 194.927 196.996 198.000 201.114 201.329 nge 3 -> Velocity ft/sec 201.332 201.875 204.208 205.334 206.542 208.876 211.210 212.668 213.544 215.877 218.211 220.002 220.545 222.879 225.213 227.336 227.546	718.0 706.7 695.4 683.8 678.1 672.2 660.6 659.4 4 4 Motor Torque 850.2 849.9 845.8 841.6 837.5 833.4 830.8 829.2 824.4 819.5 815.8 814.7 809.8 805.0 795.4 794.4	3533.9 3478.2 3422.4 3365.4 3337.5 3251.3 3245.3 Force @ Wheel 3281.4 3280.5 3256.8 3248.5 3226.6 3206.6 3200.6 3181.9 3163.2 3148.9 3144.5 3125.8 3107.1 3070.0 3066.3	73.057 75.175 77.333 79.821 81.048 82.332 84.932 85.205 Aero dynamic Drag - HP 85.209 85.899 88.913 90.392 91.996 95.150 98.376 100.428 101.673 105.043 105.043 108.487 111.180 112.005 115.598 119.268 122.674 123.014	12.258 12.376 12.493 12.626 12.690 12.757 12.890 12.903 Rolling Resist. HP 12.904 12.938 13.088 13.160 13.237 13.387 13.537 13.630 13.686 13.836 13.985 14.100 14.135 14.285 14.434	2.4539 2.4940 2.5349 2.5819 2.6051 2.6294 2.6784 2.6835 Elapsed Time (ET) 2.7336 2.7464 2.8019 2.8287 2.8576 2.9138 2.9703 3.0058 3.0272 3.0845 3.1423 3.1869 3.2005 3.2592 3.3184 3.3729 3.3783	284.830 292.542 300.470 309.689 314.266 319.078 328.889 329.925 Total Distance 339.930 342.519 353.770 359.271 365.225 376.887 388.759 396.287 400.844 413.151 425.690 435.473 438.464 451.478	1.430 1.405 1.380 1.353 1.341 1.327 1.301 1.298 Accele ration in G's 1.314 1.313 1.305 1.301 1.296 1.288 1.279 1.274 1.270 1.261 1.243 1.241 1.221 1.221 1.221 1.203 1.201	2528.9 2514.3 2469.7 2425.1 2379.2 2356.7 2333.4 2287.2 2282.4 RPM Rate Change 0.0 1810.6 1798.8 1793.1 1787.0 1775.2 1763.3 1755.9 1751.4 1737.8 1724.2 1713.7 1710.6 1696.9 1683.2 1658.5 1656.0	.3001 .3020 .3078 .3137 .3204 .3237 .3271 .3339 .3346 .3346 .3346 .3364 .3443 .3481 .3522 .3602 .3683 .3734 .3765 .3847 .3931 .3996 .4016 .4101 .4187 .4267 .4275
10450.0 10550.0 10650.0 10763.0 10817.9 10874.7 10988.0 10999.8 >>>> RPM 8626.5 8650.0 8750.0 8750.0 8750.0 9050.0 9112.5 9150.0 9250.0 9350.0 9426.8 9450.0 9550.0 9550.0 9741.0 9750.0	130.41 131.66 132.91 134.32 135.00 135.71 137.12 137.27 Gear Cha MPH 137.27 137.64 139.23 140.00 140.82 142.42 144.01 145.00 145.60 145.60 145.60 147.19 148.78 150.00 150.37 151.96 153.55 155.00 155.15	191.267 193.097 194.927 196.996 198.000 201.114 201.329 nge 3 -> Velocity ft/sec 201.332 201.875 204.208 205.334 206.542 208.876 211.210 212.668 213.544 213.544 215.877 218.211 220.002 220.545 222.879 225.213 227.336	718.0 706.7 695.4 683.8 678.1 672.2 660.6 659.4 4 Motor Torque 850.2 849.9 845.8 843.8 841.6 837.5 833.4 834.8 841.6 837.5 833.4 829.2 824.4 819.5 815.8 814.7 809.8 814.7 809.8 814.7 809.8	3533.9 3478.2 3422.4 3365.4 3337.5 3251.3 3245.3 Force @ Wheel 3281.4 3280.5 3264.5 3226.8 3248.5 3226.6 3206.6 3200.6 3181.9 3163.2 3148.9 3144.5 3125.8 3107.1 3070.0	73.057 75.175 77.333 79.821 81.048 82.332 84.932 85.205 Aero dynamic Drag - HP 85.209 85.899 85.899 88.913 90.392 91.996 95.150 98.376 100.428 101.673 105.043 105.043 108.487 111.180 112.005 115.598 119.268 122.674	12.258 12.376 12.493 12.626 12.690 12.757 12.890 12.903 Rolling Resist. HP 12.904 12.938 13.088 13.160 13.237 13.387 13.630 13.630 13.636 13.836 13.836 13.985 14.100 14.135 14.285 14.434 14.570 14.584 14.733	2.4539 2.4940 2.5349 2.5819 2.6051 2.6294 2.6784 2.6835 Elapsed Time (ET) 2.7336 2.7366 2.7464 2.8019 2.8287 2.8576 2.9138 2.9703 3.0058 3.0272 3.0845 3.1423 3.1869 3.2005 3.2592 3.3184 3.3729	284.830 292.542 300.470 309.689 314.266 319.078 328.889 329.925 Total Distance 339.930 342.519 353.770 359.271 365.225 376.887 388.759 396.287 400.844 413.151 425.690 435.473 438.464 451.478 464.735 477.060	1.430 1.405 1.380 1.353 1.341 1.327 1.301 1.298 Accele ration in G's 1.314 1.313 1.305 1.301 1.296 1.288 1.279 1.274 1.270 1.261 1.251 1.243 1.241 1.221 1.221 1.203	2528.9 2514.3 2469.7 2425.1 2379.2 2356.7 2333.4 2287.2 2282.4 RPM Rate Change 0.0 1810.6 1798.8 1793.1 1787.0 1775.2 1763.3 1755.9 1751.4 1737.8 1724.2 1713.7 1710.6 1696.9 1683.2 1658.5 1656.0	.3001 .3020 .3078 .3137 .3204 .3237 .3271 .3339 .3346 Hood Scp Pressure .3346 .3364 .3481 .3522 .3602 .3683 .3734 .3765 .3847 .3931 .3996 .4016 .4101 .4187 .4267
10450.0 10550.0 10650.0 10817.9 10874.7 10988.0 10999.8 >>> RPM 8626.5 8650.0 8750.0 8750.0 8550.0 9050.0 9112.5 9150.0 9250.0 9426.8 9450.0 9550.0 9650.0 9741.0 9750.0 9850.0	130.41 131.66 132.91 134.32 135.00 135.71 137.12 137.27 Gear Cha MPH 137.27 137.64 139.23 140.00 140.82 142.42 144.01 145.00 145.60 145.60 145.60 147.19 148.78 150.00 150.37 151.96 153.55 155.00 155.15	<pre>191.267 193.097 194.927 196.996 198.000 199.040 201.114 201.329 nge 3 -> Velocity ft/sec 201.332 201.875 204.208 205.334 206.542 208.876 211.210 212.668 213.544 215.877 218.211 220.002 220.545 222.879 225.213 227.336 227.546 229.880</pre>	718.0 706.7 695.4 683.8 678.1 672.2 660.6 659.4 4 4 Motor Torque 850.2 849.9 845.8 841.6 837.5 833.4 830.8 829.2 824.4 819.5 815.8 814.7 809.8 805.0 795.4 794.4	3533.9 3478.2 3422.4 3365.4 3337.5 3251.3 3245.3 Force @ Wheel 3281.4 3280.5 3256.8 3248.5 3226.6 3206.6 3200.6 3181.9 3163.2 3148.9 3144.5 3125.8 3107.1 3070.0 3066.3	73.057 75.175 77.333 79.821 81.048 82.332 84.932 85.205 Aero dynamic Drag - HP 85.209 85.899 88.913 90.392 91.996 95.150 98.376 100.428 101.673 105.043 105.043 108.487 111.180 112.005 115.598 119.268 122.674 123.014	12.258 12.376 12.493 12.626 12.690 12.757 12.890 12.903 Rolling Resist. HP 12.904 12.938 13.088 13.160 13.237 13.387 13.537 13.630 13.686 13.836 13.985 14.100 14.135 14.285 14.434	2.4539 2.4940 2.5349 2.5819 2.6051 2.6294 2.6784 2.6835 Elapsed Time (ET) 2.7336 2.7464 2.8019 2.8287 2.8576 2.9138 2.9703 3.0058 3.0272 3.0845 3.1423 3.1869 3.2005 3.2592 3.3184 3.3729 3.3783	284.830 292.542 300.470 309.689 314.266 319.078 328.889 329.925 Total Distance 339.930 342.519 353.770 359.271 365.225 376.887 388.759 396.287 400.844 413.151 425.690 435.473 438.464 451.478	1.430 1.405 1.380 1.353 1.341 1.327 1.301 1.298 Accele ration in G's 1.314 1.313 1.305 1.301 1.296 1.288 1.279 1.274 1.270 1.261 1.243 1.241 1.221 1.221 1.221 1.203 1.201	2528.9 2514.3 2469.7 2425.1 2379.2 2356.7 2333.4 2287.2 2282.4 RPM Rate Change 0.0 1810.6 1798.8 1793.1 1787.0 1775.2 1763.3 1755.9 1751.4 1737.8 1724.2 1713.7 1710.6 1696.9 1683.2 1656.0 1628.8	.3001 .3020 .3078 .3137 .3204 .3237 .3271 .3339 .3346 .3346 .3346 .3364 .3443 .3481 .3522 .3602 .3683 .3734 .3765 .3847 .3931 .3996 .4016 .4101 .4187 .4267 .4275
10450.0 10550.0 10650.0 10763.0 10817.9 10874.7 10988.0 10999.8 >>>> RPM 8626.5 8650.0 8750.0 8750.0 8798.3 8850.0 8950.0 9050.0 9112.5 9150.0 9250.0 9250.0 9426.8 9450.0 9550.0 9550.0 9741.0 9750.0 9550.0	130.41 131.66 132.91 134.32 135.00 135.71 137.12 137.27 Gear Cha MPH 137.27 137.64 139.23 140.00 140.82 142.42 144.01 145.00 145.60 147.19 148.78 150.00 150.37 151.96 155.15 156.74 158.33	<pre>191.267 193.097 194.927 196.996 198.000 199.040 201.114 201.329 nge 3 -> Velocity ft/sec 201.332 201.875 204.208 205.334 206.542 208.876 211.210 212.668 213.544 215.877 218.211 220.002 220.545 222.879 225.213 227.336 227.546 229.880</pre>	718.0 706.7 695.4 683.8 678.1 672.2 660.6 659.4 4 Motor Torque 850.2 849.9 845.8 843.8 841.6 837.5 833.4 834.8 841.6 837.5 833.4 829.2 824.4 819.5 815.8 814.7 809.8 814.7 809.8 814.7 809.8	3533.9 3478.2 3422.4 3365.4 3308.5 3251.3 3245.3 Force @ Wheel 3281.4 3280.5 3264.5 3256.8 3248.5 3256.8 3248.5 3216.6 3206.6 3200.6 3181.9 3163.2 3148.9 3144.5 3125.8 3107.1 3070.0 3066.3 3025.4	73.057 75.175 77.333 79.821 81.048 82.332 84.932 85.205 Aero dynamic Drag - HP 85.209 85.899 88.913 90.392 91.996 95.150 98.376 100.428 101.673 105.043 105.043 108.487 111.180 112.005 115.598 119.268 122.674 123.014 126.838	12.258 12.376 12.493 12.626 12.690 12.757 12.890 12.903 Rolling Resist. HP 12.904 12.938 13.088 13.160 13.237 13.387 13.630 13.630 13.636 13.836 13.836 13.985 14.100 14.135 14.285 14.434 14.570 14.584 14.733	2.4539 2.4940 2.5349 2.5819 2.6051 2.6294 2.6784 2.6835 Elapsed Time (ET) 2.7336 2.7464 2.8019 2.8287 2.8576 2.9138 2.9703 3.0058 3.0272 3.0845 3.1423 3.1869 3.2005 3.2592 3.3184 3.3729 3.3783 3.4392	284.830 292.542 300.470 309.689 314.266 319.078 328.889 329.925 Total Distance 339.930 342.519 353.770 359.271 365.225 376.887 388.759 396.287 400.844 413.151 425.690 435.473 438.464 451.478 464.735 477.060	1.430 1.405 1.380 1.353 1.341 1.298 Accele ration in G's 1.314 1.313 1.305 1.301 1.296 1.288 1.279 1.274 1.270 1.261 1.251 1.243 1.241 1.221 1.203 1.201 1.181	2528.9 2514.3 2469.7 2425.1 2379.2 2356.7 2333.4 2287.2 2282.4 RPM Rate Change 0.0 1810.6 1798.8 1793.1 1787.0 1775.2 1763.3 1755.9 1751.4 1737.8 1724.2 1713.7 1710.6 1696.9 1683.2 1658.5 1656.0 1628.8 1601.5	.3001 .3020 .3078 .3137 .3204 .3237 .3271 .3339 .3346 .3346 .3346 .3364 .3443 .3481 .3522 .3602 .3683 .3734 .3765 .3847 .3931 .3996 .4016 .4101 .4187 .4267 .4275 .4363
10450.0 10550.0 10650.0 10817.9 10874.7 10988.0 10999.8 >>>> RPM 8626.5 8650.0 8750.0 8750.0 8750.0 9050.0 9112.5 9150.0 9250.0 9250.0 9426.8 9450.0 9550.0 9550.0 9650.0 9741.0 9750.0 9750.0 9850.0	130.41 131.66 132.91 134.32 135.00 135.71 137.12 137.27 Gear Cha MPH 137.27 137.64 139.23 140.00 140.82 142.42 144.01 145.00 145.60 145.60 145.60 150.37 151.96 153.55 155.00 155.15 156.74 158.33 159.92	191.267 193.097 194.927 196.996 198.000 201.114 201.329 nge 3 -> Velocity ft/sec 201.332 201.875 204.208 205.334 206.542 208.876 211.210 212.668 213.544 215.877 218.211 220.002 220.545 222.879 225.213 227.336 227.546 229.880 232.214 234.548	718.0 706.7 695.4 683.8 678.1 672.2 660.6 659.4 4 Motor Torque 850.2 849.9 845.8 843.8 843.8 841.6 837.5 833.4 830.8 829.2 829.2 824.4 819.5 815.8 814.7 809.8 805.0 795.4 794.4 794.4 794.4 793.2 762.7	3533.9 3478.2 3422.4 3365.4 337.5 3208.5 3245.3 Force @ Wheel 3281.4 3280.5 3264.5 3264.5 3264.5 3264.5 3264.5 3226.6 3206.6 3206.6 3206.6 3206.6 3206.6 3206.6 3181.9 3163.2 3148.9 3144.5 3125.8 3125.8 3107.1 30066.3 3025.4 2984.5 2943.7	73.057 75.175 77.333 79.821 81.048 82.332 85.205 Aero dynamic Drag - HP 85.209 85.899 88.913 90.392 91.996 95.150 98.376 100.428 101.673 105.043 105.043 105.043 105.043 105.043 105.043 105.043 105.043 105.2674 112.005	12.258 12.376 12.493 12.626 12.690 12.757 12.890 12.903 Rolling Resist. HP 12.904 12.938 13.088 13.160 13.237 13.387 13.537 13.630 13.686 13.836 13.985 14.100 14.135 14.285 14.434 14.570 14.584 14.733 14.883 15.032	2.4539 2.4940 2.5349 2.5819 2.6051 2.6294 2.6784 2.6835 Elapsed Time (ET) 2.7336 2.7464 2.8019 2.8287 2.8576 2.9138 3.0058 3.0272 3.0845 3.1423 3.1869 3.2005 3.2592 3.3184 3.3729 3.3783 3.4392 3.5011 3.5641	284.830 292.542 300.470 309.689 314.266 319.078 328.889 329.925 Total Distance 339.930 342.519 353.770 359.271 365.225 376.887 388.759 396.287 400.844 413.151 425.690 435.473 438.464 451.478 464.735 477.060 478.295 492.221 506.527 521.225	1.430 1.405 1.380 1.353 1.341 1.298 Accele ration in G's 1.314 1.313 1.305 1.301 1.296 1.288 1.279 1.274 1.270 1.261 1.251 1.243 1.241 1.221 1.221 1.221 1.203 1.201 1.181 1.162 1.142	2528.9 2514.3 2469.7 2425.1 2379.2 2356.7 2333.4 2287.2 2282.4 RPM Rate Change 0.0 1810.6 1798.8 1793.1 1787.0 1775.2 1763.3 1755.9 1751.4 1737.8 1724.2 1713.7 1710.6 1696.9 1683.2 1658.5 1656.0 1628.8 1601.5 1574.2	.3001 .3020 .3078 .3137 .3204 .3237 .3271 .3339 .3346 Hood Scp Pressure .3346 .3364 .3443 .3481 .3522 .3602 .3683 .3734 .3765 .3847 .3931 .3996 .4016 .4101 .4187 .4267 .4267 .4363 .4452 .4542
10450.0 10550.0 10650.0 10763.0 10817.9 10874.7 10988.0 10999.8 >>>> RPM 8626.5 8650.0 8750.0 8750.0 9050.0 9112.5 9150.0 9250.0 9350.0 9350.0 9426.8 9450.0 9550.0 9550.0 9650.0 9741.0 9550.0 9650.0 9750.0 9550.0	130.41 131.66 132.91 134.32 135.00 135.71 137.12 137.27 Gear Cha MPH 137.27 137.64 139.23 140.00 140.82 142.42 144.01 145.00 145.60 147.19 148.78 150.00 150.37 151.96 153.55 155.15 156.74 158.33 159.92 160.00	191.267 193.097 194.927 196.996 198.000 199.040 201.114 201.329 nge 3 -> Velocity ft/sec 201.332 201.875 204.208 205.334 206.542 208.876 211.210 212.668 213.544 215.877 218.211 220.002 220.545 222.879 225.213 227.546 229.880 232.214 234.548 234.670	718.0 706.7 695.4 683.8 678.1 672.2 660.6 659.4 4 4 Motor Torque 850.2 849.9 845.8 843.8 841.6 837.5 833.4 830.8 829.2 824.4 830.8 819.5 815.8 814.7 809.8 805.0 795.4 794.4 783.8 773.2 762.7 762.1	3533.9 3478.2 3422.4 3365.4 3337.5 3208.5 3245.3 Force @ Wheel 3281.4 3280.5 3264.5 3248.5 3248.5 3264.5 3256.8 3248.5 3226.6 3200.6 3201.6 3200.6 3181.9 3163.2 3148.9 3144.5 3125.8 3107.1 3070.0 3066.3 3025.4 2943.7 2941.5	73.057 75.175 77.333 79.821 81.048 82.332 85.205 Aero dynamic Drag - HP 85.209 85.899 88.913 90.392 91.996 95.150 98.376 100.428 101.673 105.043 105.043 105.043 105.043 105.043 105.043 105.205 115.598 119.268 122.674 123.014 126.838 130.741 134.722 134.934	12.258 12.376 12.493 12.626 12.690 12.757 12.890 12.903 Rolling Resist. HP 12.904 12.938 13.088 13.160 13.237 13.537 13.630 13.630 13.630 13.686 13.985 14.100 14.135 14.285 14.100 14.135 14.285 14.434 14.570 14.584 14.733 14.883 15.032 15.040	2.4539 2.4940 2.5349 2.5819 2.6051 2.6294 2.6784 2.6835 Elapsed Time (ET) 2.7336 2.7366 2.7464 2.8019 2.8287 2.8576 2.9138 2.9703 3.0058 3.0272 3.0845 3.1423 3.1869 3.2005 3.2592 3.3184 3.3729 3.3783 3.4392 3.5011 3.5641 3.5674	284.830 292.542 300.470 309.689 314.266 319.078 328.889 329.925 Total Distance 339.930 342.519 353.770 359.271 365.225 376.887 388.759 396.287 400.844 413.151 425.690 435.473 438.464 451.478 464.735 477.060 478.295 492.221 506.527 521.225 522.008	1.430 1.405 1.380 1.353 1.341 1.298 Accele ration in G's 1.314 1.313 1.305 1.301 1.296 1.288 1.279 1.274 1.270 1.261 1.251 1.243 1.241 1.221 1.221 1.203 1.201 1.181 1.162 1.142	2528.9 2514.3 2469.7 2425.1 2379.2 2356.7 2333.4 2282.4 RPM Rate Change 0.0 1810.6 1798.8 1793.1 1787.0 1775.2 1763.3 1755.9 1751.4 1737.8 1724.2 1713.7 1710.6 1696.9 1683.2 1658.5 1656.0 1628.8 1601.5 1574.2 1572.8	.3001 .3020 .3078 .3137 .3204 .3237 .3271 .3339 .3346 Hood Scp Pressure .3346 .3364 .3443 .3481 .3522 .3602 .3683 .3734 .3765 .3847 .3931 .3996 .4016 .4101 .4187 .4267 .4275 .4275 .4275 .4275
10450.0 10550.0 10650.0 10763.0 10817.9 10874.7 10988.0 10999.8 >>>> RPM 8626.5 8650.0 8750.0 8798.3 8850.0 9050.0 9112.5 9150.0 9250.0 9350.0 9426.8 9450.0 9550.0 9550.0 9426.8 9450.0 9550.0 9550.0 9550.0 9550.0 9550.0 9550.0 9550.0 9550.0 9550.0 9550.0 9550.0 9550.0 9550.0 9550.0 9550.0 9550.0 9550.0 9550.0 9550.0	130.41 131.66 132.91 134.32 135.00 135.71 137.12 137.27 Gear Cha MPH 137.27 137.64 139.23 140.00 140.82 142.42 144.01 145.00 145.60 145.60 145.60 150.37 151.96 153.55 155.15 156.74 158.33 159.92 160.00 161.51	191.267 193.097 194.927 196.996 198.000 201.114 201.329 nge 3 -> Velocity ft/sec 201.332 201.875 204.208 205.334 206.542 208.876 211.210 212.668 213.544 215.877 218.211 220.002 220.545 222.879 225.213 227.546 229.880 232.214 234.548 234.670 236.882	718.0 706.7 695.4 683.8 678.1 672.2 660.6 659.4 4 4 Motor Torque 850.2 849.9 845.8 843.8 843.8 843.8 843.6 837.5 833.4 830.8 829.2 824.4 819.5 815.8 814.7 809.8 814.7 809.8 805.0 795.4 794.4 783.8 7794.4 783.8 7794.4 783.8	3533.9 3478.2 3422.4 3365.4 3337.5 3251.3 3245.3 Force @ Wheel 3281.4 3280.5 3264.5 3256.8 3248.5 3226.8 3248.5 3226.8 3248.5 3226.6 3200.6 3200.6 3200.6 3148.9 3144.5 3125.8 3125.8 3107.1 3070.0 3066.3 3025.4 2943.7 2941.5 2902.7	73.057 75.175 77.333 79.821 81.048 82.332 85.205 Aero dynamic Drag - HP 85.209 85.899 85.899 88.913 90.392 91.996 95.150 98.376 100.428 101.673 105.043 105.043 105.043 105.043 105.043 105.598 119.268 122.674 123.014 124.722 134.934 138.784	12.258 12.376 12.493 12.626 12.690 12.757 12.890 12.903 Rolling Resist. HP 12.904 12.938 13.088 13.160 13.237 13.387 13.537 13.630 13.630 13.636 13.985 14.100 14.135 14.285 14.434 14.570 14.584 14.584 14.733 14.883 15.032 15.040 15.182	2.4539 2.4940 2.5349 2.5819 2.6051 2.6294 2.6835 Elapsed Time (ET) 2.7336 2.7464 2.8019 2.8287 2.8576 2.9138 2.9703 3.0058 3.0272 3.0845 3.1423 3.1869 3.2005 3.2592 3.3184 3.3729 3.3783 3.4392 3.5011 3.5641 3.5674 3.6282	284.830 292.542 300.470 309.689 314.266 319.078 328.889 329.925 Total Distance 339.930 342.519 353.770 359.271 365.225 376.887 388.759 396.287 400.844 413.151 425.690 435.473 438.464 451.478 464.735 477.060 478.295 492.221 506.527 521.225 522.008 536.331	1.430 1.405 1.380 1.353 1.341 1.327 1.301 1.298 Accele ration in G's 1.314 1.313 1.305 1.301 1.296 1.288 1.279 1.274 1.270 1.261 1.243 1.241 1.221 1.203 1.201 1.181 1.162 1.142 1.141 1.122	2528.9 2514.3 2469.7 2425.1 2379.2 2356.7 2333.4 2282.4 RPM Rate Change 0.0 1810.6 1798.8 1793.1 1787.0 1775.2 1763.3 1755.9 1751.4 1737.8 1724.2 1713.7 1710.6 1696.9 1683.2 1658.5 1656.0 1628.8 1601.5 1574.2 1572.8 1546.8	.3001 .3020 .3078 .3137 .3204 .3237 .3271 .3339 .3346 Hood Scp Pressure .3346 .3443 .3443 .3481 .3522 .3602 .3683 .3734 .3765 .3847 .3931 .3996 .4016 .4101 .4187 .4267 .4275 .4363 .4452 .4546 .4633
10450.0 10550.0 10650.0 10763.0 10817.9 10874.7 10988.0 10999.8 >>>> RPM 8626.5 8650.0 8750.0 8798.3 8850.0 9050.0 9112.5 9150.0 9250.0 9426.8 9450.0 9550.0 9426.8 9450.0 9550.0 9550.0 9550.0 9550.0 9550.0 9550.0 9050.0 10055.3 10150.0 10250.0	130.41 131.66 132.91 134.32 135.00 135.71 137.12 137.27 Gear Cha MPH 137.27 137.64 139.23 140.00 140.82 142.42 144.01 145.00 145.60 145.60 145.60 150.37 151.96 153.55 155.00 155.15 156.74 158.33 159.92 160.00 161.51 163.10	191.267 193.097 194.927 196.996 198.000 201.114 201.329 nge 3 -> Velocity ft/sec 201.332 201.875 204.208 205.334 206.542 208.876 211.210 212.668 213.544 213.544 215.877 218.211 220.002 220.545 222.879 225.213 227.546 229.880 232.214 234.548 234.670 236.882 239.216	718.0 706.7 695.4 683.8 678.1 672.2 660.6 4 4 4 Motor Torque 850.2 849.9 845.8 843.8 841.6 837.5 833.4 829.2 824.4 819.5 814.7 809.8 814.7 809.8 814.7 809.8 805.0 795.4 794.4 783.8 773.2 762.7 762.1 752.0 740.7	3533.9 3478.2 3422.4 3365.4 337.5 3251.3 3245.3 Force @ Wheel 3281.4 3280.5 3264.5 3264.5 3226.8 3248.5 3226.8 3248.5 3226.6 3200.6 3200.6 3200.6 3200.6 3200.6 3200.6 3200.6 3148.9 3144.5 3125.8 3107.1 3070.0 3066.3 3025.4 2984.5 2985.7 2995.7 2855.0 2995.7 2855.0 2995.7 2855.0 2995.7 2855.0 2995.7 2855.0 2955.7 2055.7 2055.7 2055.7 2055.7 2055.7 2055.7 2055.7 205	73.057 75.175 77.333 79.821 81.048 82.332 85.205 Aero dynamic Drag - HP 85.209 85.899 85.899 85.899 88.913 90.392 91.996 95.150 98.376 100.428 101.673 105.043 105.043 105.043 105.043 105.043 105.205 115.598 119.268 122.674 123.014 126.838 130.741 134.722 134.934 138.784 142.927	12.258 12.376 12.493 12.626 12.690 12.757 12.890 12.903 Rolling Resist. HP 12.904 12.938 13.088 13.160 13.237 13.537 13.630 13.636 13.836 13.836 13.836 13.836 13.836 13.835 14.100 14.135 14.285 14.434 14.570 14.584 14.733 14.584 14.733 14.584 14.733 15.032 15.040 15.182 15.332	2.4539 2.4940 2.5349 2.5819 2.6051 2.6294 2.6835 Elapsed Time (ET) 2.7336 2.7464 2.8287 2.8287 2.8576 2.9138 2.9703 3.0058 3.0272 3.0845 3.1423 3.1869 3.2005 3.2592 3.3184 3.3729 3.3783 3.4392 3.5011 3.5641 3.5674 3.6282 3.6934	284.830 292.542 300.470 309.689 314.266 319.078 328.889 329.925 Total Distance 339.930 342.519 353.770 359.271 365.225 376.887 388.759 396.287 400.844 413.151 425.690 435.473 438.464 451.478 464.735 477.060 478.295 492.221 506.527 521.225 522.008 536.331 551.868	1.430 1.405 1.380 1.353 1.341 1.327 1.301 1.298 Accele ration in G's 1.314 1.313 1.305 1.301 1.296 1.288 1.279 1.274 1.270 1.261 1.243 1.241 1.221 1.243 1.241 1.221 1.162 1.142 1.141 1.122 1.101	2528.9 2514.3 2469.7 2425.1 2379.2 2356.7 2333.4 2287.2 2282.4 RPM Rate Change 0.0 1810.6 1798.8 1793.1 1787.0 1775.2 1763.3 1755.9 1751.4 1737.8 1724.2 1713.7 1710.6 1696.9 1683.2 1658.5 1656.0 1628.8 1651.5 1572.8 1546.8 1517.7	.3001 .3020 .3078 .3137 .3204 .3237 .3271 .3339 .3346 Hood Scp Pressure .3346 .3443 .3481 .3522 .3602 .3683 .3734 .3765 .3847 .3931 .3996 .4016 .4101 .4187 .4267 .4275 .4363 .4452 .4546 .4633 .4724
10450.0 10550.0 10650.0 10763.0 10817.9 10874.7 10988.0 10999.8 >>>> RPM 8626.5 8650.0 8750.0 8750.0 8750.0 9050.0 9050.0 9112.5 9150.0 9250.0 9350.0 9426.8 9450.0 9550.0 9550.0 9426.8 9450.0 9550.0 9550.0 9550.0 9550.0 9550.0 9550.0 9550.0 9550.0 9550.0 9550.0 9550.0 9550.0 9550.0 9550.0 9550.0 9550.0 9550.0 9550.0 9550.0 9050.0 10055.3 10150.0 10250.0	130.41 131.66 132.91 134.32 135.00 135.71 137.12 137.27 Gear Cha MPH 137.27 137.64 139.23 140.00 140.82 142.42 144.01 145.00 145.60 147.19 148.78 150.00 155.15 156.74 158.33 159.92 160.00 161.51 163.10 164.69	191.267 193.097 194.927 196.996 198.000 201.114 201.329 nge 3 -> Velocity ft/sec 201.332 201.875 204.208 205.334 206.542 208.876 211.210 212.668 213.544 215.877 218.211 220.002 220.545 222.879 225.213 227.336 227.546 229.880 232.214 234.548 234.670 236.882 239.216 241.549	718.0 706.7 695.4 683.8 678.1 672.2 660.6 659.4 4 Motor Torque 850.2 849.9 845.8 843.8 841.6 837.5 833.4 829.2 824.4 819.5 815.8 815.8 815.8 815.8 815.8 815.8 805.0 795.4 794.4 783.8 773.2 762.7 762.1 752.0 740.7 729.4	3533.9 3478.2 3422.4 3365.4 3337.5 3208.5 3251.3 3245.3 Force @ Wheel 3281.4 3280.5 3264.5 3226.8 3248.5 3226.8 3248.5 3226.6 3200.6 3181.9 3163.2 3148.9 3163.2 3148.9 3163.2 3148.9 3125.8 3107.1 3070.0 3066.3 3025.4 2984.5 2985.5 29	73.057 75.175 77.333 79.821 81.048 82.332 85.205 Aero dynamic Drag - HP 85.209 85.899 88.913 90.392 91.996 95.150 98.376 100.428 101.673 105.043 105.043 105.043 105.043 105.205 115.598 119.268 122.674 123.014 126.838 130.741 134.722 134.934 138.784 142.927 147.151	12.258 12.376 12.493 12.626 12.690 12.757 12.890 12.903 Rolling Resist. HP 12.904 12.938 13.088 13.160 13.237 13.387 13.537 13.630 13.630 13.686 13.836 13.985 14.100 14.135 14.285 14.434 14.570 14.584 14.733 14.883 15.032 15.040 15.182 15.332 15.481	2.4539 2.4940 2.5349 2.5819 2.6051 2.6294 2.6835 Elapsed Time (ET) 2.7336 2.7464 2.8287 2.8576 2.9138 2.9703 3.0058 3.0272 3.0845 3.1423 3.1869 3.2005 3.2592 3.3184 3.3729 3.3783 3.4392 3.5011 3.5641 3.5674 3.6282 3.6934 3.7600	284.830 292.542 300.470 309.689 314.266 319.078 328.889 329.925 Total Distance 339.930 342.519 353.770 359.271 365.225 376.887 388.759 396.287 400.844 413.151 425.690 435.473 438.464 451.478 464.735 477.060 478.295 492.221 506.527 521.225 522.008 536.331 551.868 567.862	1.430 1.405 1.380 1.353 1.341 1.327 1.301 1.298 Accele ration in G's 1.314 1.313 1.305 1.301 1.296 1.288 1.279 1.274 1.270 1.261 1.251 1.243 1.241 1.221 1.203 1.201 1.181 1.162 1.142 1.141 1.122 1.101 1.080	2528.9 2514.3 2469.7 2425.1 2379.2 2356.7 2333.4 2287.2 2282.4 RPM Rate Change 0.0 1810.6 1798.8 1793.1 1787.0 1775.2 1763.3 1755.9 1751.4 1737.8 1724.2 1713.7 1710.6 1696.9 1683.2 1658.5 1656.0 1628.8 1601.5 51574.2 1574.2 1574.8 1546.8 1517.7 1488.5	.3001 .3020 .3078 .3137 .3204 .3237 .3271 .3339 .3346 Hood Scp Pressure .3346 .3481 .3522 .3602 .3683 .3734 .3765 .3847 .3931 .3936 .4016 .4101 .4187 .4267 .4275 .4363 .4452 .4546 .4633 .4724 .4817
10450.0 10550.0 10650.0 10763.0 10817.9 10874.7 10988.0 10999.8 >>>> RPM 8626.5 8650.0 8750.0 8750.0 8750.0 9050.0 9112.5 9150.0 9250.0 9250.0 9426.8 9426.8 9426.0 9550.0 9050.0 10055.3 10150.0 10250.0 10350.0	130.41 131.66 132.91 134.32 135.00 135.71 137.12 137.27 Gear Cha MPH 137.27 137.64 139.23 140.00 140.82 142.42 144.01 145.00 145.60 147.19 148.78 150.00 155.15 156.74 158.33 159.92 160.00 161.51 163.10 164.69 165.00	191.267 193.097 194.927 196.996 198.000 201.114 201.329 nge 3 -> Velocity ft/sec 201.332 201.875 204.208 205.334 206.542 208.876 211.210 212.668 213.544 215.877 218.211 220.002 220.545 222.879 225.213 227.336 227.546 229.880 232.214 234.548 234.670 236.882 239.216 241.549 242.004	718.0 706.7 695.4 683.8 678.1 672.2 660.6 659.4 4 4 Motor Torque 850.2 849.9 845.8 841.6 837.5 833.4 841.6 837.5 833.4 829.2 824.4 819.5 815.8 814.7 809.8 805.0 795.4 794.4 783.8 773.2 762.7 762.1 752.0 740.7 729.4 727.2	3533.9 3478.2 3422.4 3365.4 3337.5 3208.5 3251.3 3245.3 3245.3 Force @ Wheel 3281.4 3280.5 3264.5 3226.8 3248.5 3226.6 3200.6 3181.9 3144.5 3215.8 3125.8 3125.8 3125.8 3107.1 3070.0 3066.3 3025.4 2984.5 2943.7 2943.7 2943.7 2943.7 2943.7 2943.7 2943.7	73.057 75.175 77.333 79.821 81.048 82.332 84.932 85.205 Aero dynamic Drag - HP 85.209 85.899 88.913 90.392 91.996 95.150 98.376 100.428 101.673 105.043 105.043 105.043 108.487 111.180 112.005 115.598 119.268 122.674 123.014 126.838 130.741 134.722 134.934 138.784 142.927 147.151	12.258 12.376 12.493 12.626 12.690 12.757 12.890 12.903 Rolling Resist. HP 12.904 12.938 13.088 13.160 13.237 13.387 13.537 13.630 13.630 13.686 13.985 14.100 14.135 14.285 14.434 14.570 14.584 14.733 14.883 15.032 15.040 15.182 15.332 15.481 15.510	2.4539 2.4940 2.5349 2.5819 2.6051 2.6294 2.6784 2.6835 Elapsed Time (ET) 2.7336 2.7464 2.8019 2.8287 2.8576 2.9138 2.9703 3.0058 3.0272 3.0845 3.1423 3.1869 3.2005 3.2592 3.3184 3.3729 3.3783 3.4392 3.5011 3.5641 3.5674 3.6934 3.7600 3.7731	284.830 292.542 300.470 309.689 314.266 319.078 328.889 329.925 Total Distance 339.930 342.519 353.770 359.271 365.225 376.887 388.759 396.287 400.844 413.151 425.690 435.473 438.464 451.478 464.735 477.060 478.295 492.221 506.527 521.225 522.008 536.331 551.868 567.862 571.035	1.430 1.405 1.380 1.353 1.341 1.327 1.301 1.298 Accele ration in G's 1.314 1.313 1.305 1.301 1.296 1.288 1.279 1.274 1.270 1.261 1.251 1.243 1.221 1.221 1.221 1.221 1.203 1.201 1.181 1.162 1.141 1.122 1.101 1.080 1.076	2528.9 2514.3 2469.7 2425.1 2379.2 2356.7 2333.4 2287.2 2282.4 RPM Rate Change 0.0 1810.6 1798.8 1793.1 1787.0 1775.2 1763.3 1755.9 1751.4 1737.8 1724.2 1713.7 1710.6 1696.9 1683.2 1658.5 1656.0 1628.8 1601.5 1574.2 1574.2 1574.8 1546.8	.3001 .3020 .3078 .3137 .3204 .3237 .3271 .3339 .3346 .3346 .3346 .3346 .3364 .3443 .3481 .3522 .3602 .3683 .3734 .3765 .3847 .3931 .3996 .4016 .4101 .4187 .4267 .4275 .4363 .4452 .4542 .4542 .4542 .4546 .4633 .4724 .4817 .4835
10450.0 10550.0 10650.0 10763.0 10817.9 10874.7 10988.0 10999.8 >>>> RPM 8626.5 8650.0 8750.0 8750.0 8750.0 9050.0 9050.0 9112.5 9150.0 9250.0 9350.0 9426.8 9450.0 9550.0 9550.0 9426.8 9450.0 9550.0 9550.0 9550.0 9550.0 9550.0 9550.0 9550.0 9550.0 9550.0 9550.0 9550.0 9550.0 9550.0 9550.0 9550.0 9550.0 9550.0 9550.0 9550.0 9050.0 10055.3 10150.0 10250.0	130.41 131.66 132.91 134.32 135.00 135.71 137.12 137.27 Gear Cha MPH 137.27 137.64 139.23 140.00 140.82 142.42 144.01 145.00 145.60 147.19 148.78 150.00 155.15 156.74 158.33 159.92 160.00 161.51 163.10 164.69	191.267 193.097 194.927 196.996 198.000 201.114 201.329 nge 3 -> Velocity ft/sec 201.332 201.875 204.208 205.334 206.542 208.876 211.210 212.668 213.544 215.877 218.211 220.002 220.545 222.879 225.213 227.336 227.546 229.880 232.214 234.548 234.670 236.882 239.216 241.549	718.0 706.7 695.4 683.8 678.1 672.2 660.6 659.4 4 Motor Torque 850.2 849.9 845.8 843.8 841.6 837.5 833.4 829.2 824.4 819.5 815.8 815.8 815.8 815.8 815.8 815.8 805.0 795.4 794.4 783.8 773.2 762.7 762.1 752.0 740.7 729.4	3533.9 3478.2 3422.4 3365.4 3337.5 3208.5 3251.3 3245.3 Force @ Wheel 3281.4 3280.5 3264.5 3226.8 3248.5 3226.8 3248.5 3226.6 3200.6 3181.9 3163.2 3148.9 3163.2 3148.9 3163.2 3148.9 3125.8 3107.1 3070.0 3066.3 3025.4 2984.5 2985.5 29	73.057 75.175 77.333 79.821 81.048 82.332 85.205 Aero dynamic Drag - HP 85.209 85.899 88.913 90.392 91.996 95.150 98.376 100.428 101.673 105.043 105.043 105.043 105.043 105.205 115.598 119.268 122.674 123.014 126.838 130.741 134.722 134.934 138.784 142.927 147.151	12.258 12.376 12.493 12.626 12.690 12.757 12.890 12.903 Rolling Resist. HP 12.904 12.938 13.088 13.160 13.237 13.387 13.537 13.630 13.630 13.686 13.836 13.985 14.100 14.135 14.285 14.434 14.570 14.584 14.733 14.883 15.032 15.040 15.182 15.332 15.481	2.4539 2.4940 2.5349 2.5819 2.6051 2.6294 2.6835 Elapsed Time (ET) 2.7336 2.7464 2.8287 2.8576 2.9138 2.9703 3.0058 3.0272 3.0845 3.1423 3.1869 3.2005 3.2592 3.3184 3.3729 3.3783 3.4392 3.5011 3.5641 3.5674 3.6282 3.6934 3.7600	284.830 292.542 300.470 309.689 314.266 319.078 328.889 329.925 Total Distance 339.930 342.519 353.770 359.271 365.225 376.887 388.759 396.287 400.844 413.151 425.690 435.473 438.464 451.478 464.735 477.060 478.295 492.221 506.527 521.225 522.008 536.331 551.868 567.862	1.430 1.405 1.380 1.353 1.341 1.327 1.301 1.298 Accele ration in G's 1.314 1.313 1.305 1.301 1.296 1.288 1.279 1.274 1.270 1.261 1.251 1.243 1.241 1.221 1.203 1.201 1.181 1.162 1.142 1.141 1.122 1.101 1.080	2528.9 2514.3 2469.7 2425.1 2379.2 2356.7 2333.4 2287.2 2282.4 RPM Rate Change 0.0 1810.6 1798.8 1793.1 1787.0 1775.2 1763.3 1755.9 1751.4 1737.8 1724.2 1713.7 1710.6 1696.9 1683.2 1658.5 1656.0 1628.8 1601.5 51574.2 1574.2 1574.8 1546.8 1517.7 1488.5	.3001 .3020 .3078 .3137 .3204 .3237 .3271 .3339 .3346 Hood Scp Pressure .3346 .3481 .3522 .3602 .3683 .3734 .3765 .3847 .3931 .3996 .4016 .4101 .4187 .4267 .4275 .4363 .4452 .4542 .4546 .4633 .4724 .4817

10550.0	167.88	246.217	706.7	2727.8	155.847	15.780	3.8970	601.297	1.037	1429.8	.5005
10650.0	169.47	248.551	695.4	2684.0	160.321	15.930	3.9677	618.780	1.016	1400.4	.5100
10683.6	170.00	249.335	691.9	2670.7	161.844	15.980	3.9918	624.775	1.009	1391.4	.5132
10763.0	171.26	251.188	683.8	2639.4	165.478	16.099	4.0493	639.165	.994	1370.0	.5209
10874.7	173.04	253.795	672.2	2594.7	170.685	16.266	4.1318	659.988	.972	1339.6	.5318
10874.7	173.05	253.802	672.2	2594.6	170.698	16.266	4.1320	660.041	.972	1351.4	.5318
10988.0	174.84	256.439	660.6	2549.8	176.075	16.435	4.2173	681.814	.949	1308.9	.5429
10997.8	175.00	256.668	659.6	2545.9	176.546	16.450	4.2248	683.737	.947	1306.2	.5439
10999.8	175.03	256.714	659.4	2545.2	176.641	16.453	4.2263	684.122	.947	1305.7	.5441
>>>>		nge 4 ->									
		-		Force	Aero	Rolling	Elapsed		Accele		
RPM	MPH	Velocity	Motor	@	dynamic	Resist.	Time		ration	RPM Rate	Hood Scp
		ft/sec	Torque	Wheel	Drag - HP	HP	(ET)	Distance			Pressure
			-		-					-	
8641.5	175.04	256.721	850.0	2577.4	176.656	16.453	4.2765	696.871	.961	0.0	.5441
8650.0	175.21	256.973	849.9	2577.1	177.178	16.470	4.2847	698.968	.961	1040.7	.5452
8750.0	177.23	259.944	845.8	2564.6	183.394	16.660	4.3812	723.911	.953	1031.7	.5578
8850.0	179.26	262.915	841.6	2552.0	189.754	16.850	4.4786	749.364	.944	1022.6	.5707
8886.8	180.00	264.007	840.1	2547.4	192.128	16.920	4.5146	758.848	.941	1019.2	.5754
8950.0	181.29	265.886	837.5	2539.4	196.259	17.041	4.5768	775.336	.936	1013.5	.5836
9050.0	183.31	268.857	833.4	2526.9	202.911	17.231	4.6759	801.839	.927	1004.3	.5968
9133.5	185.00	271.337	829.9	2516.4	208.580	17.390	4.7594	824.383	.920	996.6	.6078
9150.0	185.34	271.827	829.2	2514.3	209.712	17.422	4.7760	828.883	.919	995.0	.6100
9250.0	187.36	274.798	824.4	2499.7	216.664	17.612	4.8770	856.493	.909	984.8	.6234
9350.0	189.39	277.769	819.5	2484.9	223.767	17.802	4.9791	884.698	.900	974.4	.6370
9380.3	190.00	278.668	818.1	2480.5	225.946	17.860	5.0102	893.349	.897	971.3	.6411
9450.0	191.41	280.740	814.7	2470.3	231.024	17.993	5.0823	913.511	.890	964.0	.6507
9550.0	193.44	283.710	809.8	2455.6	238.436	18.183	5.1865	942.947	.881	953.6	.6645
9627.3	195.00	286.005	806.1	2444.3	244.269	18.330	5.2679	966.122	.873	945.5	.6753
9650.0	195.46	286.681	805.0	2440.9	246.004	18.374	5.2920	973.021	.871	943.1	.6785
9737.5	197.24	289.288	795.7	2412.8	252.777	18.541	5.3859	1000.056	.855	926.5	.6909
9750.0	197.49	289.652	794.4	2412.0	253.732	18.564	5.3991	1003.888	.853	924.2	.6926
9850.0	199.52	292.623	783.8	2376.7	261.619	18.754	5.5084	1035.720	.836	905.2	.7069
9850.0 9874.0	200.00	292.023	781.3	2369.0	263.536	18.800	5.5350	1043.508	.830	900.6	.7104
9950.0	200.00	295.594	773.2	2344.6	269.668	18.945	5.6201	1068.561	.832	886.1	.7214
10050.0	201.54	295.594	762.7	2312.5	277.881	19.135	5.7342	1102.457	.818	866.9	.7359
10121.0	205.00	300.674	755.1	2289.7	283.812	19.270	5.8168	1127.191	.788	853.3	.7464
10121.0	205.50	301.535	752.0	2280.4	286.259	19.326	5.8509	1137.458	.783	847.7	.7506
10150.0	203.59	301.535	740.7	2246.0	294.803	19.516	5.9703	1173.641	.764	827.4	.7655
10250.0	207.02	307.477	729.4	2240.0	303.516	19.706	6.0926	1211.091	.745	806.9	.7805
10350.0	209.04	308.004	727.4	2205.5	305.080	19.740	6.1147	1217.876	.742	803.3	.7832
10450.0	210.00	310.448	718.0	2203.3	312.399	19.897	6.2182	1249.876	.726	786.4	.7957
10550.0	213.69	313.418	706.7	2142.9	321.454	20.087	6.3470	1290.070	.720	765.9	.8110
10550.0	213.09	315.335	699.4	2142.9	327.386	20.087	6.4320	1316.781	.695	752.6	.8209
10622.0	215.00	315.565	698.6	2120.7	328.103	20.210	6.4423	1320.033		750.9	
10650.0	215.10	316.389	695.4	2118.1	330.681	20.225	6.4794	1331.755	.693 .688	745.2	.8221 .8264
10763.0	213.72	319.746	683.8	2073.4	341.319	20.278	6.6333	1380.700	.668	723.6	.8441
10703.0	220.01	322.674	673.6	2073.4	350.782	20.495	6.7713	1425.038	.651	704.6	.8596
10874.7	220.01	323.065	672.2	2042.5	352.059	20.000	6.7900	1431.080		704.0	.8617
		323.005						1442.703	.648	697.2	.8657
		.9784	009.7	2030.5	354.506	20.753	0.8200	1442.703	.644	097.2	.8057
60 Foot											
330 Foot		.6843 .1318									
1/8 Mile											
1/8 Mile											
1000 Foo											
1/4 Mile 1/4 Mile											
			- 5 501								
ILY USIN	g rear G	ear Ratio	- 5.521								

1/2 Mile ET = 19.078 -- 1/2 Mile MPH = 182.92 1 KM ET = 21.402 -- 1 KM MPH = 192.58 1 Mile ET = 28.119 -- 1 Mile MPH = 211.74 2 KM ET = 32.171 -- 2 KM MPH = 219.15 3 KM ET = 42.124 - 3 KM MPH = 228.792 Mile ET = 44.257 -- 2 Mile MPH = 229.87 4 KM ET = 51.816 -- 4 KM MPH = 232.25 5 KM ET = 58.498 -- 5 KM MPH = 233.17 3 Mile ET = 59.772 -- 3 Mile MPH = 233.27 6 KM ET = 70.997 -- 6 KM MPH = 233.72 4 Mile ET = 75.183 -- 4 Mile MPH = 233.78 7 KM ET = 80.566 -- 7 KM MPH = 233.82 8 KM ET = 90.132 -- 8 KM MPH = 233.85 5 Mile ET = 90.579 -- 5 Mile MPH = 233.85 9 KM ET = 99.699 -- 9 KM MPH = 233.86 6 Mile ET = 105.974 -- 6 Mile MPH = 233.86

```
10 KM ET = 109.264 -- 10 KM MPH = 233.86
11 KM ET = 118.829 -- 11 KM MPH = 233.86
7 Mile ET = 121.368 -- 7 Mile MPH = 233.86
12 KM ET = 128.394 -- 12 KM MPH = 233.86
```

Acceleration and Top Speed Prediction Chart with Throttle Stop

Throttle S RPM	4000
Throttle S Time	1.255
CVT RPM	9500
CVT Power Loss	20.0
Track - BP or Air Density	29.92126
🔽 Hood Scoop	<u>Q</u> uit
Throttle Stop	CVT

Acceleration and Top Speed Prediction Chart.

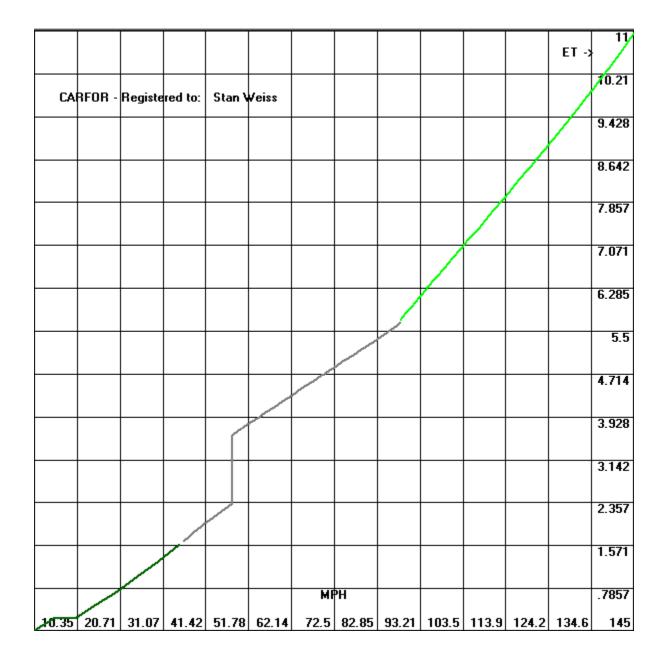
RPM	МРН	Velocity ft/sec	Motor Torque	Force @ Wheel	Aero dynamic Drag - HP	Rolling Resist. HP	Elapsed Time (ET)	Total Distance	Accele ration in G's
3999.5	0.00	.000	585.9	0.0	.000	.000	.0000	979	.000
3999.5	5.00	7.337	585.9	2488.2	.006	.580	.2492	065	.915
3999.5	5.18	7.596	585.9	2488.2	.006	.601	.2580	.001	.915
>>>>	RollOut	Ends <->	1/4 Mile	Distanc	e and ET St	arts Now	0.2579	6	
3999.5	10.00	14.671	585.9	2488.2	.045	1.160	.2402	2.675	.915
3999.5	15.00	22.004	585.9	2488.2	.152	1.740	.4893	7.241	.915
3999.5	20.00	29.337	585.9	2488.2	.360	2.320	.7383	13.633	.915
3999.5	25.00	36.670	585.9	2488.2	.703	2.900	.9873	21.852	.915
3999.5	30.00	44.003	585.9	2488.2	1.215	3.480	1.2363	31.896	.915
3999.5	35.00	51.336	585.9	2488.2	1.929	4.060	1.4853	43.767	.915
3999.5	40.00	58.669	585.9	2488.2	2.879	4.640	1.7344	57.464	.915
3999.5	40.86	59.928	585.9	2488.2	3.069	4.740	1.7771	60.000	.915
3999.5	45.00	66.002	585.9	2488.2	4.100	5.220	1.9868	73.211	.873
>>>>		e Stop Sta							
3999.5	47.87	70.215	585.9	2488.2	4.936	5.553	2.1405	83.679	.000
3999.5	47.87	70.215	585.9	2488.2	4.936	5.553	3.3955	171.798	.000
>>>>	Throttle	e Stop End							
4100.0	49.07	71.970	597.0	2534.9	5.315	5.692	3.4606	176.429	.850
4177.8	50.00	73.335	605.6	2571.2	5.624	5.800	3.5102	180.030	.862
4200.0	50.27	73.726	608.0	2581.6	5.714	5.831	3.5243	181.064	.865
4300.0	51.46	75.481	619.0	2628.3	6.132	5.970	3.5868	185.726	.881
4400.0	52.66	77.236	630.0	2675.0	6.570	6.109	3.6482	190.413	.897
4500.0	53.86	78.992	641.0	2721.7	7.028	6.248	3.7085	195.126	.912
4595.5	55.00	80.668	646.3	2744.4	7.485	6.380	3.7655	199.674	.915
4600.0	55.05	80.747	646.6	2745.5	7.507	6.386	3.7681	199.890	.915
4700.0	56.25	82.502	652.2	2769.2	8.007	6.525	3.8278	204.756	.915
4800.0	57.45	84.258	657.8	2793.0	8.529	6.664	3.8874	209.726	.915
4900.0	58.65	86.013	663.4	2816.8	9.073	6.803	3.9470	214.801	.915
5000.0	59.84	87.768	669.0	2840.6	9.640	6.942	4.0066	219.981	.915

NEW Version 4.0.0

>>>--- Gear Change 3 -> 4

			-	Force	Aero	Rolling	Elapsed		Accele
RPM	MPH	Velocity	Motor	@	dynamic	Resist.	Time	Total	ration
		ft/sec	Torque	Wheel	Drag - HP	HP	(ET)	Distance	in G's
5428.8	139.26	204.250	1847.3	3912.2	162.094	20.499	3.6524	436.250	1.102
5450.0	139.81	205.050	1846.6	3910.8	164.005	20.580	3.6750	440.875	1.098
5457.8	140.01	205.341	1846.3	3910.1	164.706	20.609	3.6832	442.570	1.096
5550.0	142.37	208.812	1842.5	3902.0	173.199	20.957	3.7824	463.107	1.079
5650.0	144.94	212.574	1837.1	3890.7	182.731	21.335	3.8917	486.141	1.060
5652.5	145.00	212.668	1837.0	3890.4	182.974	21.344	3.8945	486.727	1.060
5750.0	147.50	216.337	1831.0	3877.7	192.607	21.712	4.0030	510.019	1.041
5847.5	150.00	220.005	1824.1	3863.2	202.571	22.081	4.1137	534.153	1.021
5850.0	150.07	220.099	1824.0	3862.8	202.831	22.090	4.1165	534.784	1.020
5950.0	152.63	223.861	1815.9	3845.8	213.412	22.468	4.2323	560.484	1.000
6042.5	155.01	227.342	1807.6	3828.1	223.521	22.817	4.3416	585.134	.980
6050.0	155.20	227.624	1806.9	3826.7	224.354	22.845	4.3505	587.171	.979
6150.0	157.76	231.386	1797.1	3806.0	235.664	23.223	4.4713	614.901	.957
6237.3	160.00	234.669	1787.8	3786.2	245.837	23.552	4.5790	639.993	.938
6250.0	160.33	235.149	1786.4	3783.3	247.348	23.600	4.5949	643.732	.935
6304.5	161.73	237.208	1780.2	3770.0	253.905	23.807	4.6638	660.006	.923
6315.0	162.00	237.594	1779.0	3767.5	255.145	23.846	4.6768	663.092	.921
60 Foot	ET = 1	.1864							
330 Foot	: ET = 3	.1098							
1/8 Mile	e ET = 4	.6638							

1/8 Mile MPH = 159.0652


----- Calculated From Constant Velocity 1000 Foot ET = 6.0948 1/4 Mile ET = 7.4417 1/4 Mile MPH = 161.9960

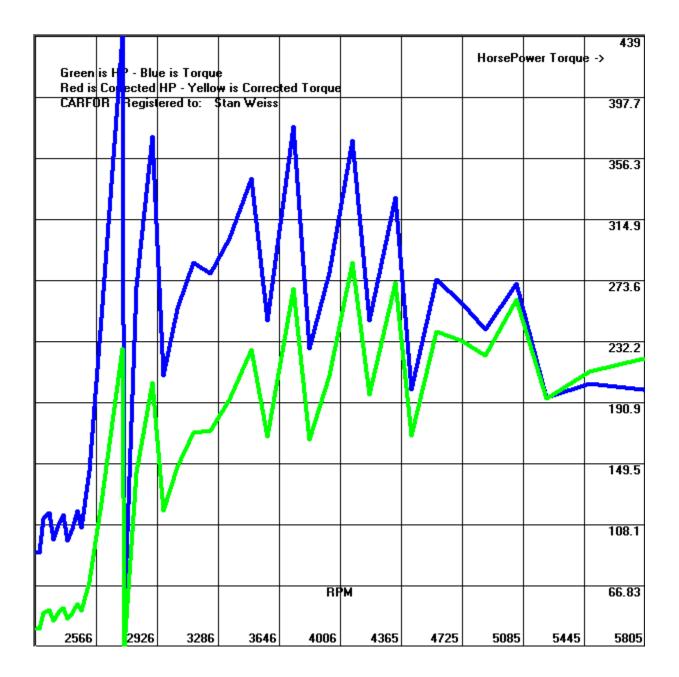
----- Calculated From DeAcceleration

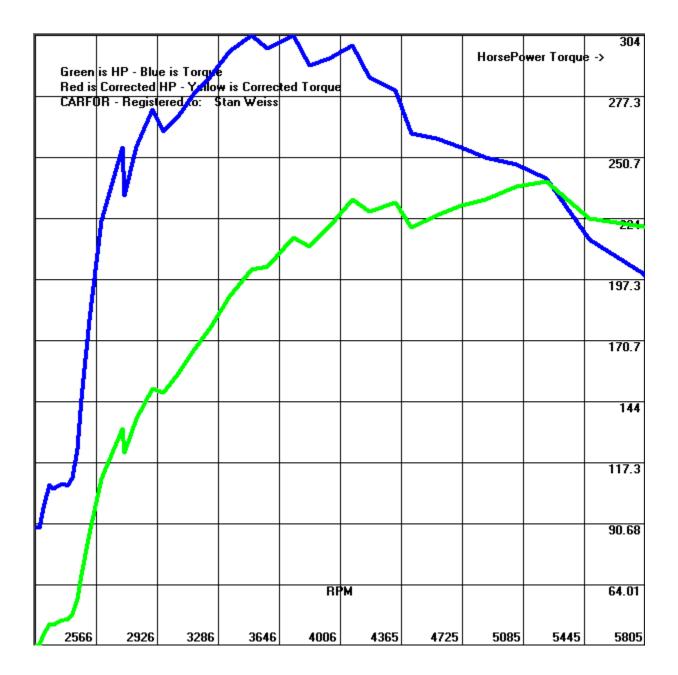
RPM	мрн	Velocity	Motor	Force @	Aero dynamic	Rolling Resist.	Elapsed Time	Total	Accele ration
RPM	мрн	-			-				
		ft/sec	Torque	Wheel	Drag - HP	HP	(ET)	Distance	in G.s
	161.75	237.227			253.966	23.809	4.7347	676.839	197
	161.50	236.861			252.790	23.772	4.7928	690.606	196
	161.25	236.494			251.618	23.735	4.8511	704.393	196
	161.00	236.127			250.449	23.699	4.9095	718.202	195
	160.75	235.761			249.284	23.662	4.9681	732.031	194
	160.50	235.394			248.123	23.625	5.0269	745.881	194
	160.25	235.027			246.965	23.588	5.0859	759.751	193
	160.00	234.661			245.811	23.551	5.1450	773.643	193
	159.75	234.294			244.661	23.515	5.2044	787.556	192
	159.50	233.927			243.514	23.478	5.2639	801.490	191
	159.25	233.561			242.371	23.441	5.3236	815.444	191
	159.00	233.194			241.231	23.404	5.3835	829.421	190
	158.75	232.827			240.095	23.367	5.4435	843.418	190
	158.50	232.461			238.962	23.331	5.5038	857.437	189
	158.25	232.094			237.833	23.294	5.5643	871.477	189
	158.00	231.727			236.708	23.257	5.6249	885.538	188
	157.75	231.361			235.586	23.220	5.6857	899.621	187
	157.50	230.994			234.468	23.183	5.7467	913.726	187
	157.25	230.627			233.353	23.147	5.8079	927.852	186
	157.00	230.261			232.242	23.110	5.8693	942.000	186
	156.75	229.894			231.134	23.073	5.9309	956.170	185
	156.50	229.527			230.030	23.036	5.9927	970.361	184
	156.25	229.161			228.929	22.999	6.0547	984.575	184
	156.00	228.794			227.832	22.963	6.1168	998.810	183
	155.75	228.427			226.739	22.926	6.1792	1013.068	183
	155.50	228.061			225.648	22.889	6.2418	1027.348	182
	155.25	227.694			224.562	22.852	6.3045	1041.650	182
	155.00	227.327			223.479	22.815	6.3675	1055.974	181

154 - CARFOR Performance Software by Stan Weiss / World Wide Enterprises

154.75	226.961	222.399	22.779	6.4306	1070.320	180
154.50	226.594	221.323	22.742	6.4940	1084.689	180
154.25	226.227	220.250	22.705	6.5576	1099.080	179
154.00	225.861	219.181	22.668	6.6213	1113.494	179
153.75	225.494	218.115	22.631	6.6853	1127.931	178
153.50	225.127	217.053	22.595	6.7495	1142.390	178
153.25	224.761	215.994	22.558	6.8139	1156.872	177
153.00	224.394	214.939	22.521	6.8784	1171.377	176
152.75	224.027	213.887	22.484	6.9432	1185.904	176
152.50	223.661	212.838	22.447	7.0082	1200.455	175
152.25	223.294	211.793	22.411	7.0735	1215.029	175
152.00	222.927	210.752	22.374	7.1389	1229.625	174
151.75	222.561	209.714	22.337	7.2045	1244.245	174
151.50	222.194	208.679	22.300	7.2704	1258.889	173
151.25	221.827	207.647	22.263	7.3364	1273.555	173
151.00	221.461	206.619	22.227	7.4027	1288.245	172
150.75	221.094	205.595	22.190	7.4692	1302.959	171
150.72	221.057	205.493	22.186	7.4759	1304.431	171
150.70	221.021	205.390	22.182	7.4825	1305.904	171
150.67	220.984	205.288	22.179	7.4892	1307.377	171
150.65	220.947	205.186	22.175	7.4959	1308.851	171
150.62	220.911	205.084	22.171	7.5025	1310.324	171
150.60	220.874	204.982	22.168	7.5092	1311.798	171
150.57	220.837	204.880	22.164	7.5159	1313.272	171
150.55	220.801	204.778	22.160	7.5225	1314.746	171
150.52	220.764	204.676	22.157	7.5292	1316.221	171
150.50	220.727	204.574	22.153	7.5359	1317.695	171
150.47	220.691	204.472	22.149	7.5426	1319.170	171
150.45	220.654	204.370	22.146	7.5493	1320.646	170
1000 Foot ET = 6	.1792					
1/4 Mile ET = 7	.5493					
1/4 Mile MPH = 1	50.4460					

Horse Power (Rear Wheel) Prediction Chart using either MPH or RPM and Times from Parameter File also Coefficient of Drag, Frontal Area, Tire Rolling Resistance, Tire Growth, Tire Diameter, Vehicle Weight with Driver, Trans Gear.

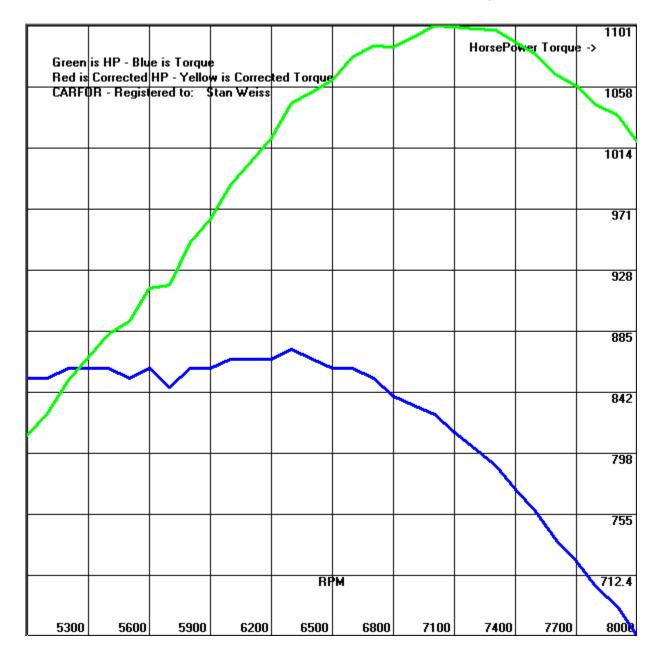

I have use data collected using the data logging function of a SCT Xcalibrator 2.


The acceleration data needs to all be collected from a single transmission gear.

Excessive tire spin will result in a false (lower) HP calculation for that period of time / RPM range.

This is a Display of the Raw Data (Input) and Calculated (Output).

			Rear	Aero	Rolling		Rear W	Accele	Time	Rate
RPM	MPH	Velocity		dynamic	Resist.	Elapsed	Horse	ration	Differ	RPM
		ft/sec	Torque	Drag - HP	HP	Time	Power	in G's	ential	Sec
2207.0	25.922	38.020	0.00	.918	3.837	.0000	0.00	0.0000	0.0000	0.0
2229.3	26.184	38.403	88.88	.946	3.875	.0935	37.73	.1274	0.0935	238.0
2256.3	26.501	38.868	112.48	.981	3.922	.1805	48.32	.1661	0.0870	310.3
2289.3	26.889	39.436	116.39	1.024	3.979	.2830	50.73	.1724	0.1025	322.0
2313.3	27.170	39.850	98.11	1.057	4.021	.3733	43.21	.1423	0.0903	265.8
2340.8	27.493	40.324	108.20	1.095	4.069	.4660	48.22	.1588	0.0927	296.6
2370.3	27.840	40.832	115.31	1.137	4.120	.5587	52.04	.1704	0.0927	318.2
2396.0	28.142	41.275	97.64	1.174	4.165	.6564	44.54	.1412	0.0976	263.8
2424.0	28.471	41.758	105.24	1.216	4.214	.7539	48.57	.1536	0.0976	286.9
2452.5	28.806	42.249	117.49	1.259	4.263	.8418	54.86	.1737	0.0879	324.4
2480.0	29.129	42.722	106.06	1.302	4.311	.9369	50.08	.1548	0.0951	289.1
2526.8	29.678	43.528	144.77	1.377	4.392	1.0516	69.65	.2182	0.1147	407.6
2598.8	30.524	44.768	248.58	1.498	4.518	1.1508	123.00	.3886	0.0992	725.7
2721.3	31.963	46.878	439.06	1.720	4.730	1.2444	227.49	.7012		1309.6
2733.0	32.101	47.081	48.96	1.743	4.751	1.3493	25.48	.0600	0.1049	112.0
2804.8	32.943	48.317	269.23	1.884	4.876	1.4404	143.78	.4217	0.0911	787.6
2897.8	34.036	49.919	371.00	2.077	5.037	1.5250	204.70	.5886		1099.3
2959.5	34.761	50.983	209.41	2.213	5.145	1.6275	118.00	.3227	0.1025	602.7
3046.3	35.780	52.477	254.57	2.413	5.295	1.7446	147.66	.3966	0.1171	740.7
3138.0	36.858	54.058	285.76	2.638	5.455	1.8544	170.74	.4474	0.1098	835.6
3238.3	38.035	55.785	278.39	2.899	5.629	1.9778	171.65	.4348	0.1234	812.1
3354.0	39.395	57.779	302.41	3.221	5.830	2.1086	193.12	.4737	0.1308	884.8
3481.8	40.895	59.979	342.51	3.604	6.052	2.2355	227.06	.5390		1006.7
3574.8	41.987	61.582	246.59	3.900	6.214	2.3663	167.84	.3809	0.1307	711.3
3727.5	43.782	64.213	378.19	4.422	6.480	2.5034	268.41	.5963		1113.8
3822.5	44.897	65.849	227.77	4.769	6.645	2.6493	165.78	.3486	0.1459	651.1
3939.0	46.266	67.856	278.80	5.218	6.847	2.7938	209.10	.4318	0.1445	806.5
4076.0	47.875	70.216	368.36	5.782	7.085	2.9207	285.88	.5782		1079.9
4175.8	49.046	71.935	246.58	6.217	7.259	3.0622	196.05	.3774	0.1415	704.9
4330.3	50.861	74.596	330.05	6.932	7.527	3.2232	272.13	.5136	0.1611	959.3
4427.3	52.001	76.267	199.82	7.409	7.696	3.3969	168.44	.2990	0.1737	558.4
4573.0	53.712	78.778	274.52	8.165	7.949	3.5824	239.03	.4208	0.1855	785.9
4722.8	55.471	81.358	258.69	8.994	8.210	3.7860	232.63	.3937	0.2036	735.4
4863.8	57.127	83.787	240.32	9.823	8.455	3.9943	222.55	.3626	0.2082	677.1
5047.0	59.280	86.944	271.50	10.976	8.773	4.2322	260.90	.4125	0.2379	770.3
5222.8	61.344	89.971	194.52	12.163	9.079	4.5628	193.44	.2846	0.3306	531.6
5474.3	64.298	94.304	203.49	14.006	9.516	5.0156	212.10	.2974	0.4528	555.4
5795.8	68.074	99.842	200.01		10.075	5.6113	220.71	.2890	0.5957	539.7
5805.3	68.186	100.006	199.27	16.704	10.092	5.6290	220.26	.2877	0.0177	537.3
Average	S		220.50				153.58		0.1481	630.5

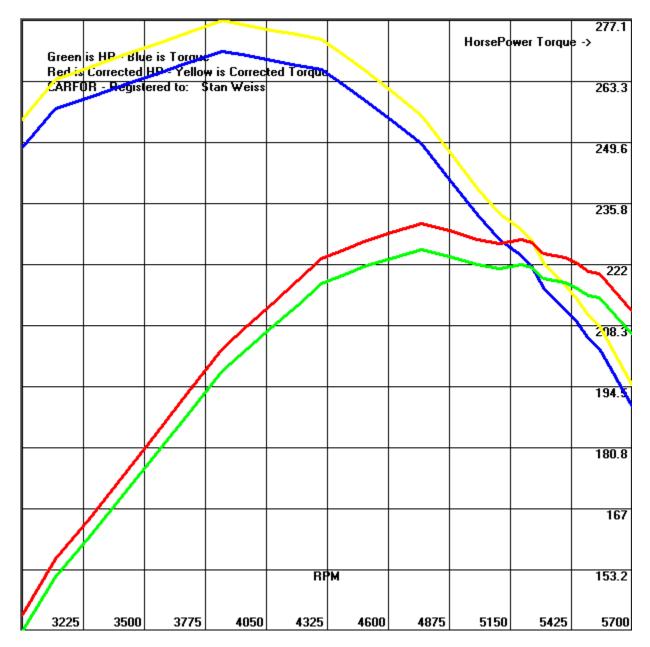


This is a Display of the Raw Data from an Inertia Dyno.

Road Horse Power Prediction Chart. These numbers will be similar to a Chassis Dyno.

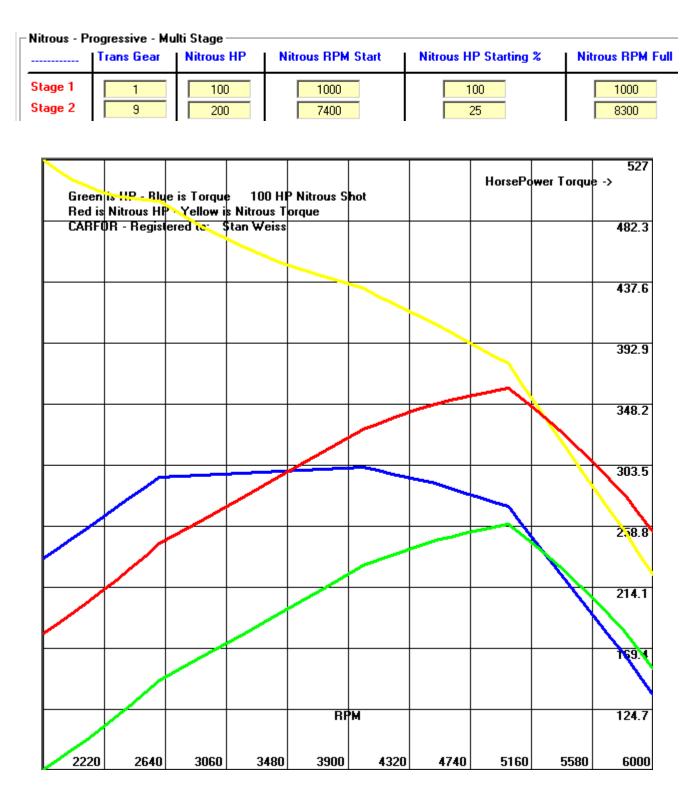
RPM	MPH	Velocity		Aero dynamic	Rolling Resist.	Elapsed	Rear W Horse	Accele ration	Time Differ	Rate RPM
		ft/sec	Torque	Drag - HP	HP	Time	Power	in G's	ential	Sec
5000 0	357.143	523.810	0.00	.000	.000	.0000	0.00	0.0000	0.0000	0.0
	364.286	534.286	852.18	.000	.000	.1280	827.52	2.5438	0.1280	781.3
	371.429	544.762	858.89	.000	.000	.2550	850.39	2.5639	0.1270	787.4
5300.0	378.571	555.238	858.89	.000	.000	.3820	866.74	2.5639	0.1270	787.4
5400.0	385.714	565.714	858.89	.000	.000	.5090	883.10	2.5639	0.1270	787.4
5500.0	392.857	576.190	852.18	.000	.000	.6370	892.42	2.5438	0.1280	781.3
5600.0	400.000	586.667	858.89	.000	.000	.7640	915.80	2.5639	0.1270	787.4
5700.0	407.143	597.143	845.58	.000	.000	.8930	917.70	2.5241	0.1290	775.2
5800.0	414.286	607.619	858.89	.000	.000	1.0200	948.51	2.5639	0.1270	787.4
5900.0	421.429	618.095	858.89	.000	.000	1.1470	964.86	2.5639	0.1270	787.4
6000.0	428.571	628.571	865.71	.000	.000	1.2730	989.00	2.5842	0.1260	793.7
6100.0	435.714	639.048	865.71	.000	.000	1.3990	1005.49	2.5842	0.1260	793.7
6200.0	442.857	649.524	865.71	.000	.000	1.5250	1021.97	2.5842	0.1260	793.7
	450.000	660.000	872.63	.000	.000	1.6500	1046.76	2.6049	0.1250	800.0
	457.143	670.476	865.71	.000	.000	1.7760	1054.94	2.5842	0.1260	793.7
	464.286	680.952	858.89	.000	.000	1.9030	1062.99	2.5639	0.1270	787.4
	471.429	691.429	858.89	.000	.000	2.0300	1079.34	2.5639	0.1270	787.4
	478.571	701.905	852.18	.000	.000	2.1580	1087.13	2.5438	0.1280	781.2
	485.714	712.381	839.07	.000	.000	2.2880	1086.38	2.5047	0.1300	769.2
	492.857	722.857	832.67	.000	.000	2.4190	1093.95	2.4856	0.1310	763.4
	500.000	733.333	826.36	.000	.000	2.5510	1101.39	2.4667	0.1320	757.6
	507.143	743.810	814.02	.000	.000	2.6850	1100.45	2.4299	0.1340	746.3
	514.286	754.286	802.05	.000	.000	2.8210	1099.54	2.3942	0.1360	735.3
	521.429	764.762	790.43	.000	.000	2.9590	1098.66	2.3595	0.1380	724.6
	528.571	775.238	773.61	.000	.000	3.1000	1090.01	2.3093	0.1410	709.2
	535.714	785.714	757.50	.000	.000	3.2440	1081.72	2.2612	0.1440	694.4
	542.857	796.190	737.02	.000	.000	3.3920	1066.52	2.2001	0.1480	675.7
	550.000	806.667	722.38	.000	.000	3.5430	1059.09	2.1564	0.1510	662.3
	557.143	817.143	703.74	.000	.000	3.6980	1045.15	2.1007	0.1550	645.2
	564.286	827.619	690.38	.000	.000	3.8560	1038.46	2.0608	0.1580	632.9
8000.0	571.429	838.095	669.20	.000	.000	4.0190	1019.34	1.9976	0.1630	613.5
Average	es		818.91				1013.18		0.1340	750.7

This is the Raw Data Graphed from an Inertia Dyno.

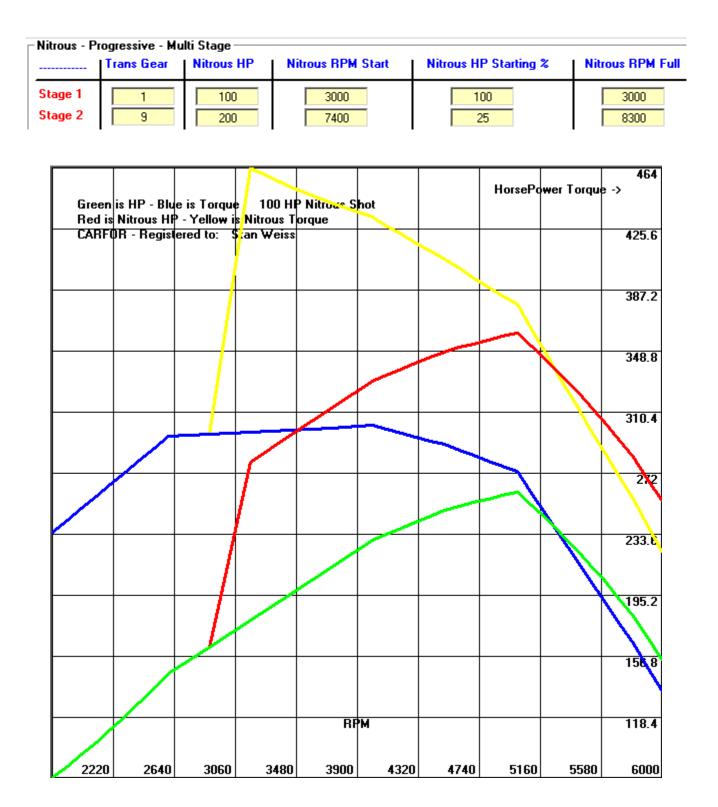

```
; 2017 Corvette Grand Sport
Car Weight = 3652.0
;Listed Power (SAE NET) = 460 -- Curb Weight = 3452
Road HP = 0.0.
Road HP = 10 \ 0.3
Road HP = 20 1.0
Road HP = 30 \ 1.5
Road HP = 40 2.1
Road HP = 50 2.7
Road HP = 60 3.7
Road HP = 704.6
Road HP = 805.9
Road HP = 907.1
Road HP = 100 8.5
Road HP = 110 \ 10.6
; 1/4 Mile
Road HP = 117.0 12.1
Road HP = 120 \ 12.7
Road HP = 130 \ 15.3
Road HP = 140 \ 18.5
```

Road Horse Power Prediction Chart. These numbers will be similar to a Chassis Dyno.

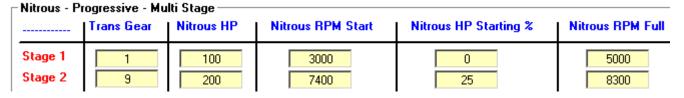
Car Weight with Driver = 3652.0 - CD = 0.34 - Frontal Area = 20.8Track BP = 29.92126 - Tire Rolling Resistance = 0.015

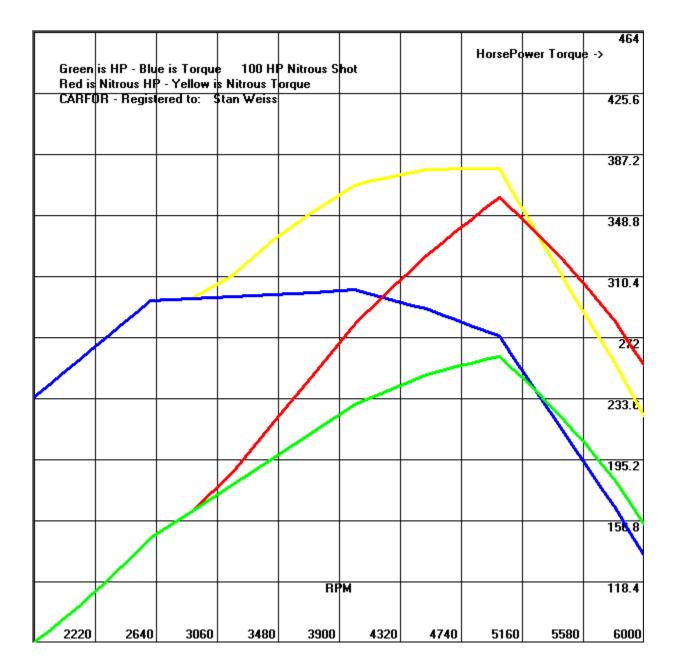

ft/sec H		encial	Drag - HP	G's	Resist. HP	Wheel HP
20.000 29.333 126 30.000 44.000 266 40.000 58.667 295 50.000 73.333 365 60.000 88.000 266 70.000 102.667 345 80.000 117.333 273 90.000 132.000 332 100.000 146.667 317 110.000 161.333 232 117.000 171.600 242 120.000 176.000 266	.00.00007.98.30006.841.00006.361.50005.962.10009.952.70006.363.70005.294.60003.195.90002.967.10007.108.50002.5410.60002.3912.10006.3612.70001.9715.30004.2218.5000	0.0000 0.3000 0.7000 0.5000 0.6000 1.0000 1.0000 1.2000 1.2000 1.4000 2.1000 1.5000 0.6000 2.6000 3.2000	.00 .05 .39 1.30 3.09 6.03 10.42 16.54 24.69 35.16 48.23 64.20 77.25 83.34 105.97 132.35	0.0000 1.5195 0.6512 0.9117 0.7598 0.7598 0.4559 0.5065 0.3507 0.3256 0.2171 0.2127 0.2279 0.1753 0.1425	.000 1.461 2.922 4.382 5.843 7.304 8.765 10.226 11.686 13.147 14.608 16.069 17.091 17.530 18.990 20.451	.00 149.49 130.15 272.05 304.89 383.28 285.55 372.06 309.58 381.26 379.94 312.81 336.73 367.24 346.93 347.02

Graph Engine RPM (X-axis) / Torque (Y-axis) (BLUE) / Corrected Torque (YELLOW) / Horse Power (Y-axis) (GREEN) / Corrected Horse Power (RED) using Torque and RPM inputs for Acceleration / Top Speed.

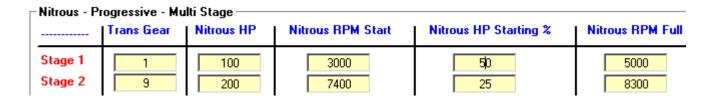

This graph was produced from the MUST00S.PRM file.

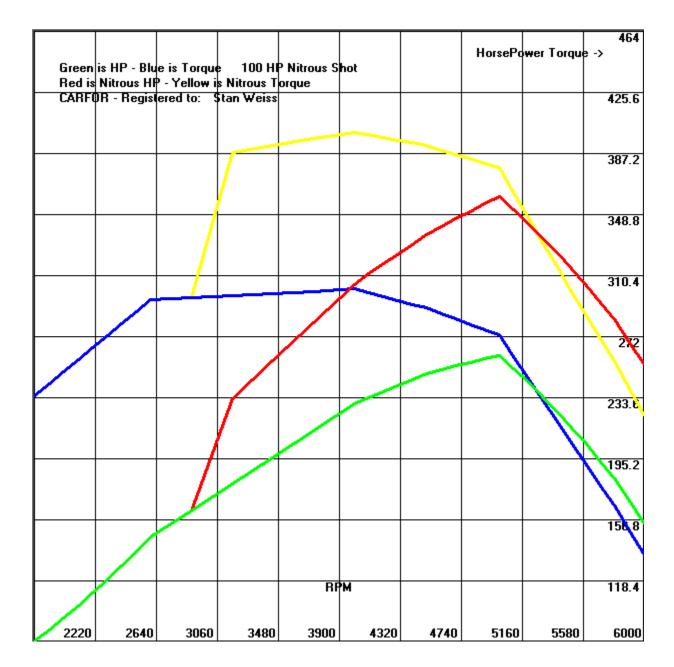
Graph Engine RPM (X-axis) / Torque (Y-axis) (BLUE) / Nitrous Torque (YELLOW) / Horse Power (Y-axis) (GREEN) / Nitrous Horse Power (RED) using Torque and RPM inputs for Acceleration / Top Speed.

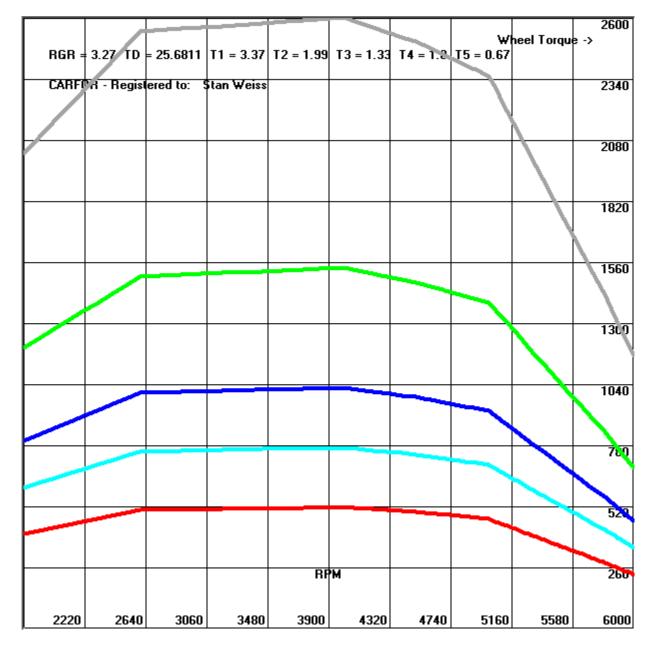



This graph was produced from the MUST00ME.PRM file.

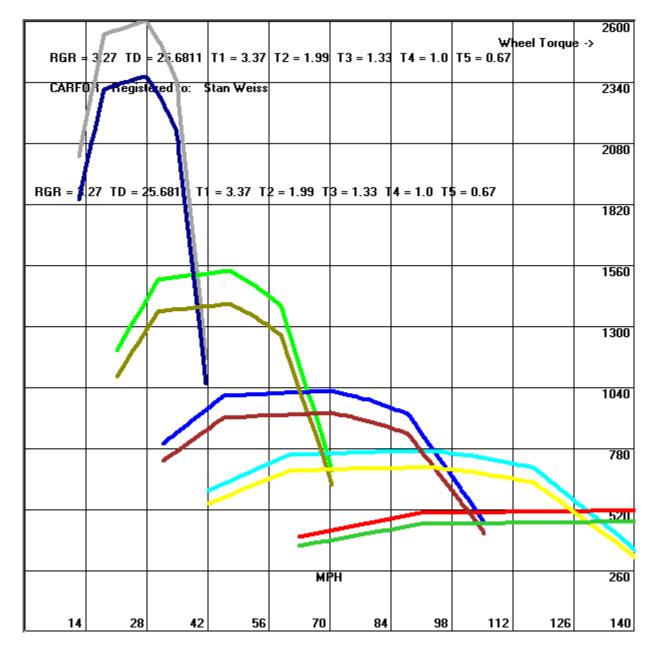
Graph Engine RPM (X-axis) / Torque (Y-axis) (BLUE) / Nitrous Torque (YELLOW) / Horse Power (Y-axis) (GREEN) / Nitrous Horse Power (RED) using Torque and RPM inputs for Acceleration / Top Speed. This graph was produced from the MUSTOOME.PRM file and using Nitrous RPM of 3000.

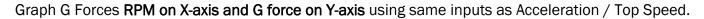

Graph Engine RPM (X-axis) / Torque (Y-axis) (BLUE) / Nitrous Torque (YELLOW) / Horse Power (Y-axis) (GREEN) / Nitrous Horse Power (RED) using Torque and RPM inputs for Acceleration / Top Speed. This graph was produced from the MUSTOOME.PRM file and using Nitrous RPM Start of 3000 a Nitrous HP Starting % of 0.0 Nitrous RPM Full of 5000.

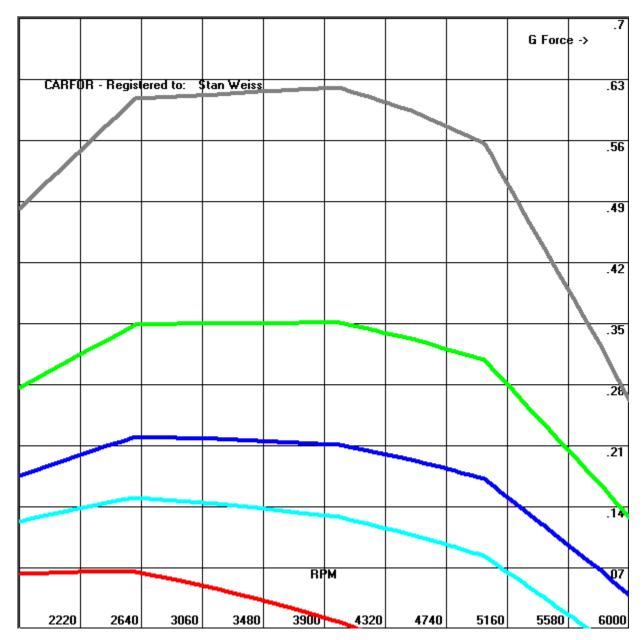


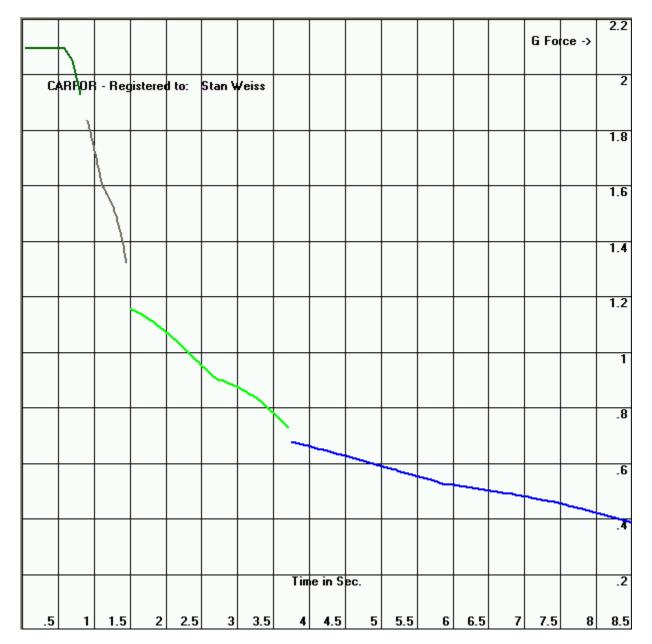

Graph Engine RPM (X-axis) / Torque (Y-axis) (BLUE) / Nitrous Torque (YELLOW) / Horse Power (Y-axis) (GREEN) / Nitrous Horse Power (RED) using Torque and RPM inputs for Acceleration / Top Speed. This graph was produced from the MUSTOOME.PRM file and using Nitrous RPM Start of 3000 a Nitrous HP Starting % of 50.0

Nitrous RPM Full of 5000.

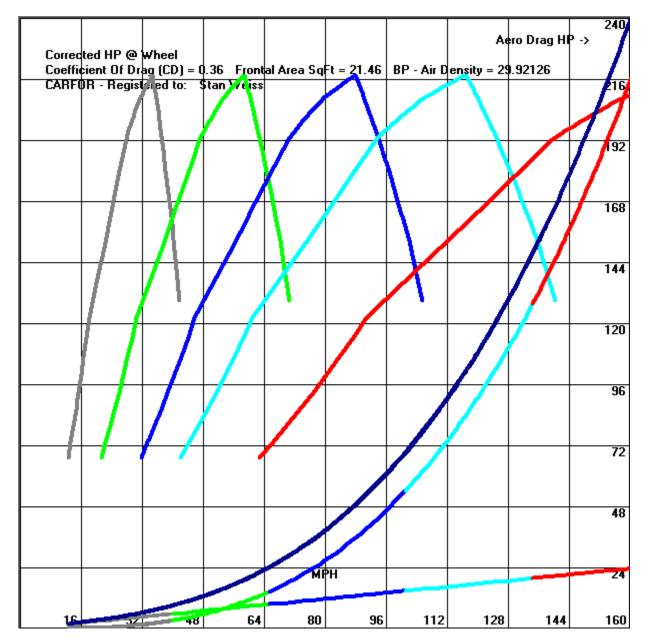

Graph Wheel Torque, **RPM on X-axis Wheel Torque on Y-axis** using same inputs as Acceleration / Top Speed.

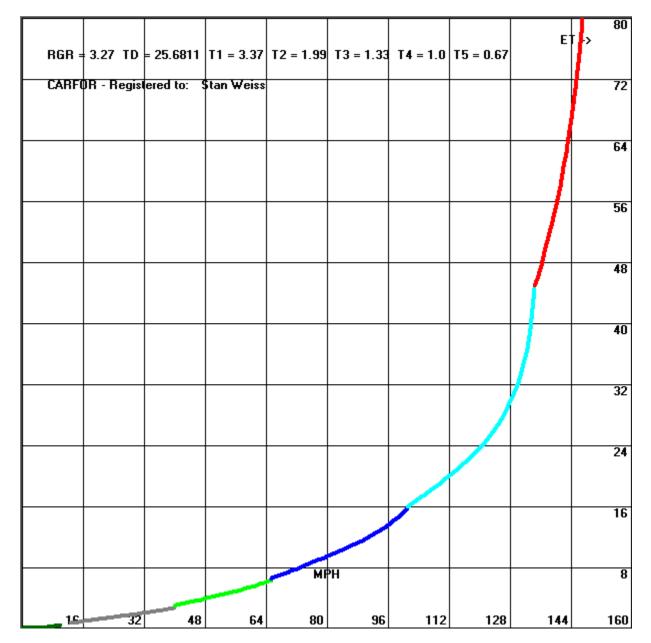



Graph Wheel Torque, **MPH on X-axis Wheel Torque on Y-axis** using same inputs as Acceleration / Top Speed.


Where the line for each gear crosses the line for the next gear that MPH (RPM) is where your ideal shift is for that gear.

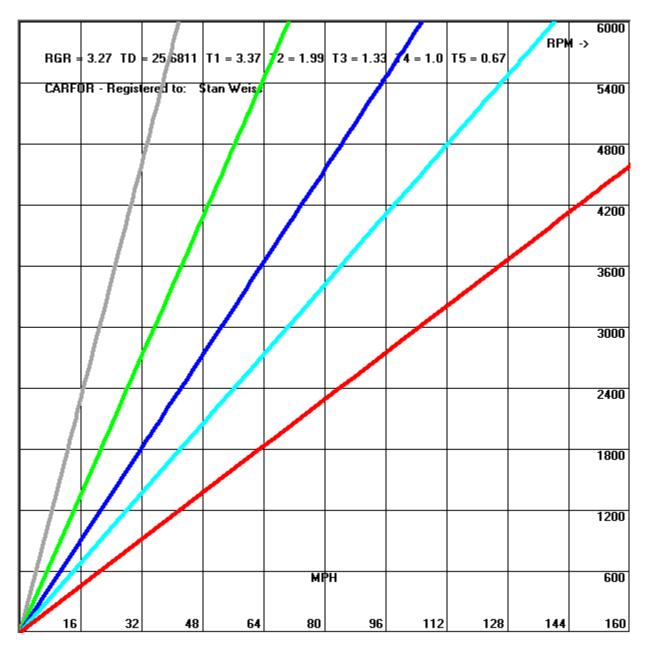
The first set (upper) lines is with a Dyno Correction Factor of 1.0 and the second set (lower) lines show the same setup with a Dyno Correction Factor of 1.1.





Graph **MPH on X-axis,** Aero Drag HP, Tire Rolling Resistance HP, Total HP Drag (DARK BLUE) and **Corrected HP at Drive Wheel(s) on Y-axis** using same inputs as Acceleration / Top Speed and Graph X high value / Graph Y high value.

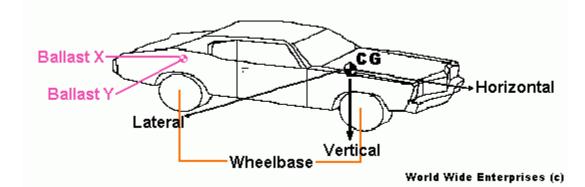
Graph **MPH on X-axis, ET on Y-axis** using same inputs as Acceleration / Top Speed and Graph X high value / Graph Y high value.


Graph Speed MPH on X-axis and RPM on Y-axis using same inputs as Acceleration / Top Speed.

CS = Converter Slippage (Shown if Automatic Transmission)

PD = Primary Drive Ratio (Shown if used)

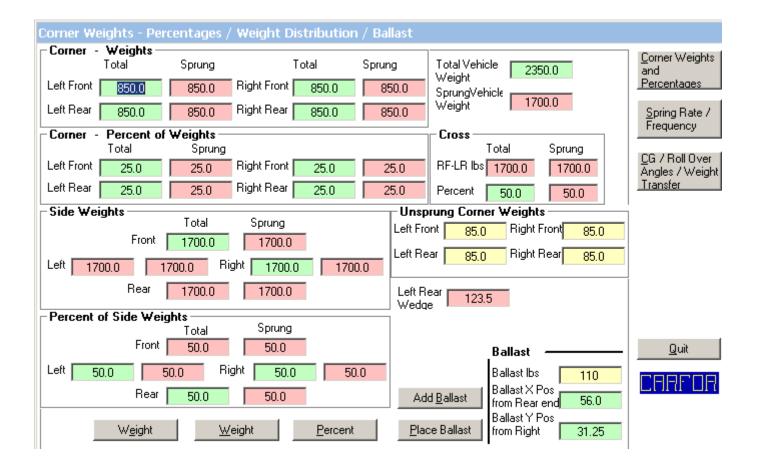
RGR = Rear Gear Ratio


- **TD =** Tire Diameter
- T1 T10 = Transmission Gear Ratios for 1st thru 10th Gear.

Graph **ET on X-axis, Nitrous HP on Y-axis** using same inputs as Acceleration / Top Speed and Graph X high value / Graph Y high value.

	N Stop Time	Nitrous HP	Nitrous Start Time	Nitrous HP Starting %	Nitrous Full Time	
Stage 8	6.543	900	0	0	6	
Stage 9	9999	150	9999	75	9999	

								Nitrous HI	300
CARFO)R - Regisl	ered to:	Stan Weiss						810
									720
									630
									540
									450
									360
									270
									180
				E	Т				90
.62	1.24	1.86	2.48	3.1	3.72	4.34	4.96	5.58	6.2

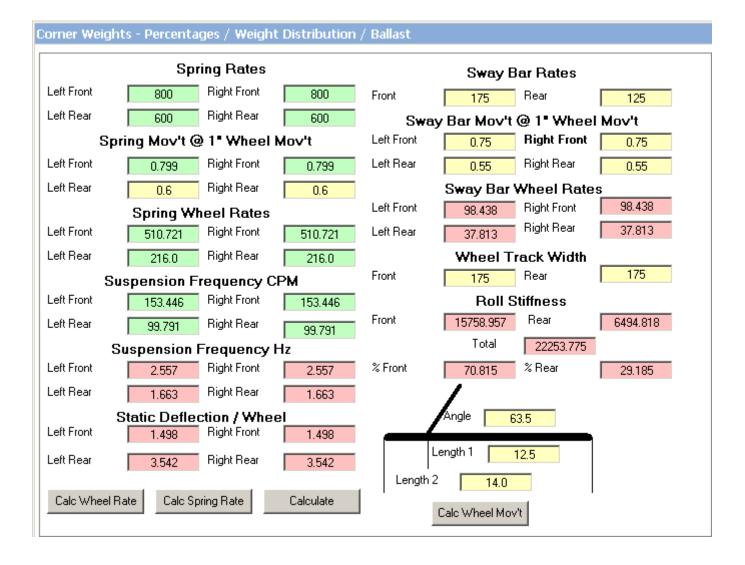

CHASSIS

Track Width - If the front and rear track widths are different then enter the average number in Track Width box. **Wheelbase** - If the left and right wheelbases are different then enter the average number in Wheelbase box. **Unsprung Weight** – Tires, rims, springs, shocks, brake rotors, fasteners.

CG Procedure:

Set the car on scales Set Tire Pressures and Ride Height Measure the Radius of each of the tires / Height to the Spindle/Axle Center Measure the Left and Right Wheel Base Measure the Front and Track Width. Weigh each corner of the vehicle with the driver inside and all fluids / Race ready Raise the Rear Tires of the vehicle and place spacers of 10 inches or in height under the rear wheels. Reweigh the front wheels of the car and enter the front weight obtained.

- 1) From corner percentages and vehicle weight -- Calculate all other percentages and weights.
- 2) From Weight on Each Corner -- Calculate all other percentages and weights.
- Calculate Center of Gravity CG (Horizontal, Vertical, and Lateral) using Wheelbase, Front Weight / Front Weight when rear is raised, Height rear is raised, and Height Front Hub / Weight Right, Track Width.
- 4) From Desired Left, Rear, and Cross percentages and vehicle weight -- Calculate all other percentages and weights.
- 5) Calculate Amount of Ballast on each corner from Wheelbase, Track Width, Ballast, X and Y Position of Ballast.
- 6) Calculate X and Y position to Place Ballast from Wheelbase, Tack Width, Rear and Right Percentages.



Roll Stiffness - When body roll occurs in a vehicle with suspension, something on the outside has to resist the body roll. That is the springs and sway bars. If the total rate of the front springs and sway bars is 823.64 and the total rate of the rear springs and sway bars is 960.02, the rear of the car has a stiffer roll resistance. The end of the car that has the most roll resistance handles that proportion of weight transfer caused by body roll. Or in other words, 46.16% of all inside to outside weight transfer caused by body roll is handled at the front due to the spring and sway bar rates installed there.

Calculate Spring Wheel Rates from Suspension Frequency CPM and Corner Sprung Weights (Previous Screen).

Calculate Spring Rates from Spring Wheel Rates and Spring Movement @ Wheel

Calculate Motion / Movement Ratio Using Length 1, Length 2 and Angle of Sock / Spring.

- 1) Calculate Cornering/Lateral Weight Transfer using Lateral Acceleration in G's, Track Width, Vertical CG, and Car Weight.
- Calculate Front / Rear Weight Transfer using Longitudinal Acceleration in G's (+ Acceleration Braking), Track Width, Vertical CG, and Car Weight.
- 3) Vertical Load on Front using Longitudinal acceleration in G's (+ Acceleration Braking), Track Width, Vertical CG, Car Weight, and Front Weight.

Roll Centers - Every vehicle has a front and rear roll center. The roll center is a point about which that end of the vehicle rolls. A straight line running through them called the roll axis joins front and rear roll centers. During cornering, the car will roll about the roll axis. The relationship between the Vertical CG and roll axis (Roll axis to CG Height) determines body roll taking place during cornering. The greater the distance between the Vertical CG and the roll axis, the greater the body roll angle for a given lateral acceleration.

	- Percentag	jes / Weight Di	stribution / Ba	allast		
- CG Tota Longitudinal CG	53.233	Sprur	-	Front	t 79	Roll Over Angles
from Front Lateral CG from Right	25.25	25.		Left/Driver	68.953	Right/ Passenger 68.953
Vertical CG [Average	9.716	Average Track Width	50.5	Rear	7	4.386
WheelBase Height Rear Wheel off	88.0	Weight Front Rear Raised Height Front	417.44	CG / Ro	-	Weight Transfer Lateral / Longitudinal
Ground I	14.0	Wheel Hub	10.0		ngle 3.29.0	Longitudinal Accel G's
Tota Vertical Load on Front (Dynamic)	301.18	Sprung 238.83	Vertical Load on Rear (Dynamic)	Total 756.82	Sprung 641.17	Skid Pad G's Lateral Accel
% Weight on Front (Dynamic)	28.47	27.14	% Weight on Rear (Dynamic)	71.53	72.86	1.5
Front/Rear [Weight Trans	116.81	97.16		Cornering/Lat Weight Trans	305.33	
Front Roll Center Height	-0.327	Rear Roll Center Height	2.25	Front Rolling Weight Trans Front NonRolling	121.91 -3.23	Rear Rolling Weight Trans Rear NonRolling Weight Trans 36,72
Roll Axis Height @ CG	1.23	Roll Axis to CG Height	8.48	Weight Trans Total Front Weight Trans	118.68	Weight Trans 56.72 Total Rear Weight Trans 181.66
Roll Moment	1122.03	Roll Angle	0.8	% Front Weight Trans	39.51	% Rear Weight <u>60.49</u> Trans
		+ Longitudinal A		_		+ Longitudinal Acceleration
Left Front	0.49	Right Front	-0.07	Left Front	41.74	Right Front 279.1
Left Rear	0.13	Right Rear	-0.42	Left Rear	186.92	Right Rear 550.24

Note: Each screen uses values that are calculated on the previous screen so you must work from top to bottom when using this 3-screen set.

Handling is composed of 4 layers. First is the kinematics layer and must be addressed first as it is very easy to correct problems here with a higher layer. Second is the static stiffness due to springs, bars, and roll center moment arm. Third is the dynamic roll stiffness due to shocks. Forth is the aerodynamic layer. Each layer can be used to correct a problem in a layer above or below, but will narrow the setup window and be less drivable.

Roll stiffness as used here includes the moment arm from the roll center to the center of mass of that end of the car. This moment arm/lever loads the springs and bars. The rate at which this happens is controlled by the shock stiffness. This controls the weight on each tire patch during cornering. Stiffness as used here only includes springs, bars, roll center moment arm, and shocks. Tire stiffness, which is in series with the above, is not addressed except as follows. The higher the tire spring in relation to the other roll stiffness components the less tire pressure will affect the handling. Going from a low tire pressure to a higher pressure (+6psi min increase) will also cause more shock activity.

Static roll stiffness due to springs and bars will be in the range of 47% to 65% of the total on the front. A good starting point is front weight % +5%, if front weight % is 44 then front roll couple % should be 49% plus or minus 2%. This is a good starting point. This number is good for sports racers, TransAm, and formula cars on a road course. Oval tracks may need as much as 65% to the front. This assumes that the roll centers are close to where they want to be. The weight transfer splits between springs, bars, and roll moment arm are the true magic numbers.

Guide to spring rate selection. The following chart gives the wheel rate as a ratio to the corner weight for the front suspension. As you can see the higher down force potential the higher the ratio.

Starting wheel Rate/Corner Weight for the front wheel rate. Car Type CART/IRL: 2.3 - 4 +ALMS LMP: 2.0 - 3 +Formula Atlantic: 1.9 DSR/CSR 1.7 Formula 2000: 1.6 S2000 1.4 1.2-1.3 Trans-Am: Formula Ford: 1-1.1 You might go as high as these with experienced drivers. F. Atlantic: 3-5/1 (high end of range on ovals) CART/IRL Ovals: 4-6/1 FF: 1.75-2/1 FC: 2-3/1 S2: 2/1

Then using the above paragraph on static roll stiffness set the bars and springs for the rear springs and bars.

Wedge, static roll stiffness, and dynamic roll stiffness, and roll moment arm together determine the weight on each of the tire contact patches as the car corners. Static wedge is determined by static weight distribution and setup adjustments to add weight to one corner. Roll stiffness is determined by springs, bars, and the moment arm (the roll center to the center of mass of the car). Dynamic roll stiffness will add or subtract from the corner weight during roll or de-roll and is controlled by the actions of the shocks. Dynamic roll couple will vary the weight on each of the tire patches as the car rolls or de rolls. In the middle of the corner the shocks job is to maintain a smooth pressure on the tire patch and will not affect over or understeer. You could look at shocks operating in two modes. First is the roll stiffness added during roll and deroll. Second is the shock trying to maintain an even load on the tire patch during steady state cornering.

Adding wedge is defined as greater <u>inside</u> weight at the rear. This causes more understeer/less oversteer. If the front has more roll resistance than the rear, the car wedges itself more as it <u>corners harder (it will tend to understeer)</u>.

De-wedging is defined as greater <u>inside</u> weight at the front. Gives oversteer/less understeer. If the rear has more roll resistance than the front the car de-wedges itself more as it <u>corners harder (it will tend to oversteer)</u>.

Wedge/de-wedge will cause increased cornering force on the end with increased weight on the inside wheel. The end with the increased outside weight will have less cornering force.

Anti squat at the rear will de-wedge the car the more power applied. It will also decrease the weight transfer to the front during braking and allow more rear brake bias.

Cars with low front roll center and beam axle or high roll center in the rear have the following. Front-stiff due to springs/bars and rear stiff due to the geometry of the high roll center. The high roll center is closer to the center of mass so has a short moment arm between the center of mass and the roll center. This makes the roll geometrically very stiff. The rear spring rates will be a much lower rate than expected due to the high roll center but the total roll stiffness will be a normal roll couple distribution (about 54%)

Dynamic roll stiffness can be affected by shocks, raising rate suspension, and roll center migration during roll.

Shocks adjustments are the most common method of adjusting dynamic roll stiffness. Springs roll center moment arm, and bars determine HOW FAR the chassis rolls. Shocks determine how rapidly the roll occurs. Shocks also can affect the total roll stiffness (static+dynamic roll stiffness) distribution during roll and de-roll. Keep in mind that if the static roll stiffness is not correct you can cover up the problem by adjusting shocks to bring total roll stiffness during corner entry and exit back to where it should be. On a 90deg or less corner you may not notice the problem. A 90 deg or more corner the car will show its static roll stiffness handling in the middle of the corner. For example the problem may show itself as "turns in great and washes out in the middle".

The shocks affect the dynamic roll stiffness much the same way that springs and bars do. Bump adjustment is similar to changing spring rate when that shock is compressing (resists spring compression). Rebound adjustment is similar to changing sway bar as the shock extends (the bar resists spring extension).

The following are guidelines for dynamic roll stiffness adjustments:

When trying to correct corner exit use rebound changes on the front and bump changes on rear first. When trying to correct corner entry use compression adjustments on the front and rebound on the rear. Corner entry oversteer increase bump on the front and/or decrease rebound in the rear. Corner entry understeer decrease bump on the front and/or increase rebound in the rear. Corner exit oversteer decrease rebound on the front and/or decrease bump on the rear. Corner exit understeer increase rebound on the front and/or increase bump on the rear.

Oval track only.

To change corner entry only change low speed rebound distribution front to rear on the left side only. To change exit only change right rebound or left bump front to rear distribution. Oversteer on exit coming off the banking add rebound to the left front only.

Raising rate suspensions will cause the static roll stiffness to be changed during the middle of the corner due to increased wheel rate. Steepness of the curve and where the suspension is on the curve will determine what the shift in wheel rate and static roll stiffness will be. Do not use raising rate on both ends of the car as the roll stiffness can be come uncontrollable.

Allowing the <u>front</u> roll center to move laterally but within the track width will cause the roll stiffness to change during roll or de-roll. Allowing it to move to the outside loaded wheel will add front roll stiffness, more understeer. Allowing it to move to the unloaded wheel side will decrease front roll stiffness, less understeer. This is due to the increase or decrease moment arm from the roll center to the center of mass. Do not allow both ends to have migrating roll centers.

Note: To see the static and dynamic roll stiffness create a math channel in the data system.

RF suspension position minus LR suspension and another channel LF suspension position minus RR suspension position and plot the two signals on top of each other. On corner entry when the signals are increasing/decreasing the angle between horizontal and the signal represent dynamic roll couple. A good handling car will have the same angle for both channels. Static roll stiffness is the middle of the corner where one signal is horizontal above and below the centerline. Corner exit is the next stage and should be read the same as corner entry.

Note: Look at the comparison of front and rear roll signals. The difference in the front and rear rolls is caused mainly by the effective radius change of the tire due to slip angle changes.

Note: Look at a comparison of yaw rate and steering to see who is causing the reaction, the car or the driver. Normally the steering is a yaw rate change request device. If the steering is followed by a change of yaw rate the driver is causing the change. If the yaw rate change is followed by a steering change the car is causing the yaw rate change.

The throttle will have similar reactions. Also look at steering rate (differentiate steered angle) as compared to throttle and oversteer/understeer for a more complete picture of driver interactions with the car.

Aerodynamics is the forth part of the handling equation. Set the center of pressure just behind the center of weight distribution for a stable car. If the first two layers, static roll stiffness distribution, and dynamic roll stiffness are correct. There will be a range of several % when the car is pronounced as "good". You can adjust within this range increase the efficiency of the car (remove some rear down force or front down force).

Note to display the aero in the data system create a math channel for the front ride height and another for the rear ride height. Create another channel for each end, which is ride height times, the ride rate (ride rate is wheel rate x2). This will give you down force at each end. Make another channel to find the % on the rear wheels.

A stiff car is very sensitive to speed, tire condition, and track condition. It will be fast if setup correctly but you will have to chase the setup as the track and tires change. It will have a much narrower line that can be driven around a corner.

Slick conditions or low track grip:

- 1- Less static roll stiffness distribution (+1% on the front) when cornering forces are modest (less bar both ends but remove less from the front) as well as less total roll stiffness. Oval track only, decrease static wedge. Make overall roll resistance distribution more front-stiff (both ends softer but remove less from the front).
- 2- Less dynamic roll stiffness. Remove low speed bump both ends and rebound both ends.

High grip needs stiffer roll resistance at both ends but proportionally softer at the front or stiffer at the back (1%). The shocks can also be stiffer but with less added to the front. This is just the opposite of the slick track.

Gas shock going hot:

Will cause wedge or de-wedge in the car if at one corner only. Will change ride height or rake if both shocks at one end have the higher pressure. Will change spring rate only a little. Watch for changes in shock velocity during a run that can be caused by a heat source near a shock.

To increase tire temperatures on a cold track raise the virtual swing arm heights to increase scrub to increase tire temps or use more toe on both ends.

Conclusions

It is very easy to correct static roll stiffness problems by using shocks. It is also easy to correct total roll stiffness not correct with the aero layer. The closer each layer is to correct the more efficient and easier to drive at the limit. If you really get them crossed up the driver will have a very hard time giving a good assessment of the handling. I have seen some very professional drivers diagnose understeer as snap oversteer.

Coil Springs / Sw	ray Bars / To	orsion Bars / Leaf Springs		
- Coil Springs - Wire Diameter	0.5	Sway Bars Out Diameter 0.875	Main Leaf Springs Main Leaf Length 48.0	Coil Spring Rate
Number Of Active Coils	10.0	Int Diameter 0.0	Main Leaf Width 2.0	Wire Diameter
Mean Diameter 🛛 of Coils	4.0	Bar Center Length 40.0	Main Leaf Thickness 0.25	Number of Coils
Rate D/inch	146.48	Arm Length 0.0	Number of Leafs 5	Coil Diameter
Modulus of Regidity	12000000	Length 9.0	Leaf Rate Ib/inch 117.73	Modulus Regidity
Outer Diameter	4.5	b/inch 213.148	Torsion Bars	<u>T</u> orsion Bar
Inter Diameter	3.5	New Sway Bar 0.975	Bar Diameter 0.88	Tor <u>B</u> ar Diameter
Spring Index	8.0	Out Diameter 328.6	Int Diameter 0,0 Bar Length 35,8	S <u>w</u> ay Bar
Number Of Coils	12.0	Ib/inch Percent Rate 54.16	Arm Length 13.5	Sway Change
Solid Height	6.0	Change '	Bar Rate 108.27	Leaf Spring
			Modulus of Bar 1178000	Quit
		Sway Bar 🕫 Old 🦷 New	CARFOR	a

SPRINGS

NOTE: The **Modulus of Rigidity** is based on the material the spring is made of, and can be gotten from many physics books.

NOTE: The Modulus of Bar is based on the material the Torsion Bar is made of.

- 1) Calculate Coil Spring Rate from Wire Diameter, Number of Active Coils, Modulus of Rigidity, and the Diameter of the Coils (from wire center to wire center).
- 2) Calculate Wire Diameter from Coil Spring Rate, Number of Active Coils, Modulus of Rigidity, and the Diameter of the Coils (from wire center to wire center).
- 3) Calculate Number of Active Coils needed from Coil Spring Rate, Wire Diameter, Modulus of Rigidity, and the Diameter of the Coils (from wire center to wire center).
- 4) Calculate Diameter of the Coils (from wire center to wire center) from Coil Spring Rate, Wire Diameter, Number of Active Coils, and Modulus of Rigidity.
- 5) Calculate Modulus of Rigidity from Coil Spring Rate, Wire Diameter, Number of Active Coils, and the Diameter of the Coils (from wire center to wire center).
- 6) Calculate Torsion Bar Rate from Bar Diameter, Bar Int Diameter, Length of Bar, Arm Length and Modulus of Bar.
- 7) Calculate Bar Diameter from Bar Int Diameter, Torsion Bar Rate, Length of Bar, Arm Length and Modulus of Bar.
- 8) Calculate Sway Bar Rate from Bar Outer Diameter, Bar Inter Diameter (If bar is solid use zero), Length of Center Bar, Arm Length, and Effective Arm Length.
- 9) Calculate Sway Bar Rate Change from change in Bar Outer Diameter.
- 10)Calculate Leaf Spring Rate from Main Leaf Length, Main Leaf Width, Main Leaf Thickness, and number of Leafs.

eather / Pulley Rat	tio - Calculato	or					
Barometric Pressure	29.92	Temperature	59.0	Humidity	5.0	Vapor Pressure	0.02515
Barometric Pressure New	29.62	Temperature New	60	Humidity New	25.0	Sat Vapor Pressure	0.503
Altitude [33.33	Jet Size	0.082	Air Density	0.0762400	Dew Point	-11.82
Altitude New	80	Jet Size New	0.0808	Air Density %	99.916	J816 Dyno Correction	0.9989
HorsePower	555.0	Metering Rod Size	0.033	Density Altitude	29.417	J1349 Dyno Correction	0.94499
HP Increase	0.0	Metering Rod Size New	0.034	Pressure Altitude	1.165	SAE Jun90 J1349-DynoJe	et 0.95445
Corrected B P	29.89	1/4 ET Correction	0.984	J607 Dyno Correction - Ford	0.99985	J1349 Dyno Correction	0.9573
Density Altitude Dry Air	28.73	Density Altitude Moist	10.86	⊙ 59 Deg C	60 Deg	J607 Dyno Correction-D1	0.99988
Virtual Temp.	59.44	Virtual Temperat.	59.16	Std Barometric Pressure	29.92	Grains of Water	3.66
Accessory Dr	ive Ratio						
Crank	5.25	New Crank	6.25	Org. Drive Ratio	0.724	% Change	-19.05
Accessory	7.25	New Accessory	7.25	New Drive Ratio	0.826		
Change <u>T</u> emp	Change	Humidity Ch	ange <u>B</u> aromet	er Change <u>A</u> lti	tude	<u>v</u> p dp dc	Metric
Jet <u>S</u> ize	Mete	ring Rod	<u>A</u> ir Density	Pulley Rat	tio	ARFOR	Quit
<u>Bypass</u> Jet Size	Estimat	e BP Altitude	Jet Text Rep	oort Jet Size	W MR		

WEATHER

- 1) Estimate the Change in Horsepower from the change in Temperature.
- 2) Estimate the Change in Horsepower from the change in Humidity.
- 3) Estimate the Change in Horsepower from the change in Barometric Pressure.
- 4) Estimate the Change in Horsepower from the change in Altitude.
- 5) Calculate Vapor Pressure, Saturation Vapor Pressure, Dew Point, Dyno Correction Factory, Air Density, and Density Altitude.
- 6) Estimate the Change in Jet Size from the change in Barometric Pressure, Humidity, and Temperature.
- 7) Estimate the Change in Metering Rod Size from the change in Barometric Pressure, Humidity, and Temperature.
- 8) Estimate the Change in Bypass Jet Size for FI from the change in Barometric Pressure, Humidity, and Temperature. Note this function backwards from a carburetor jet.
- 9) Estimate Barometric Pressure from Altitude.
- 10)Calculate Pulley Drive Ratio and % Change in Drive Ratio from the Diameters of Crank Pulley, Accessory Pulley, New Crank Pulley, New Accessory Pulley.
 - a. To get Accessory RPM multiple Crank RPM by Drive Ratio.

User can select 59 or 60 Degrees as standard temperature used.

Barometric Pressure - Is the actual or Station Pressure reading.

Vapor Pressure - Is the amount of water in the air.

Saturation Vapor Pressure - Is the maximum amount of water (vapor pressure) the air can hold.

Dyno Correction Factor – So that horsepower and torque numbers can be compared when measured at different temperatures, humidity and Barometer reading. The problem is there is more than one SAE "Standard Day" or rather they have changed what a Standard Day is.

184 - CARFOR Performance Software by Stan Weiss / World Wide Enterprises

2 Stroke Port Timing	
Bore 4.0 Stroke 3.25 Rod Length 5.7 Compression 13.59405	Exhaust Port Dist
Engine RPM 6500 Piston to Deck 0.016 Time 1 Rev in 9.2308 Dynamic Comp 7.432	<u>E</u> xhaust Duration
Swept/Cylinder Effective Trapped Hores Ratio	Boost Port Dist
Squiph Pation Common Squiph Area	Boost Duration
Squish Average Piston	Lianster Port
Clearance 0.047244 Squish Volume 2.309 Bowl Diameter 2.309 Speed 3520.83	Lranster Duration
Max. Squish Velocity 137.67 Velocity 9.7 Inlet TA 0.1089 Exhaust TA 0.1089	Blowdown
Number of 8 Regrees Velocity Blowdown TA 0,1089 Transfer TA 0,1089	<u>D</u> ynamic CR
Cylinders Velocity Port Time Area Distance to Port from Crank Duration Time Port open Total Port Area cm ² /cm ³ Angle Area deg	<u>C</u> omp Ratio
Top of Cylinder Degrees Degrees in Milli Seconds Inch ² / cm ² Milli seconds cm ² /cm ³	Ex <u>h</u> aust Port D2
Exhaust 1.399 74.125 211.749 5.4295 4.309 0.2255 8.7957	Exhaust Port TA
Boost 1.499 77.516 204.967 5.25557 3.984 0.2018 7.872	Boost Port TA
Transfer 1,599 80.917 198.165 5.0812 2.217 0.1086 4.235	T∆
	B <u>M</u> EP
Blowdown 0.2 Blowdown 0.1742	<u>S</u> quish Area
Graph MSV 1 Graph MSV 2 + TA's from BMEP TA's from HP Quit	Sguish Volume
	Max. Squish Vel
	Max. Squish Vel
	🔲 Metric

2–Stroke Port Timing

- 1) Calculate Exhaust Piston Travel, using Stroke, Rod Length and Crank Degrees Rotation.
- Calculate Exhaust Duration in Degrees / Crank Degrees ATDC it Opens / Time Port Open in Milliseconds, using RPM, Stroke, Rod Length, Deck Clearance and the Distance the Top of the Exhaust Port is from The Top of the Cylinder.
- 3) Calculate Boost Piston Travel, using Stroke, Rod Length and Crank Degrees Rotation.
- 4) Calculate Boost Duration in Degrees / Crank Degrees ATDC it Opens / Time Port Open in Milliseconds, using RPM, Stroke, Rod Length, Deck Clearance and the Distance the Top of the Boost Port is from The Top of the Cylinder.
- 5) Calculate Transfer Piston Travel, using Stroke, Rod Length and Crank Degrees Rotation.
- 6) Calculate Transfer Duration in Degrees / Crank Degrees ATDC it Opens / Time Port Open in Milliseconds, using RPM, Stroke, Rod Length, Deck Clearance and the Distance the Top of the Transfer Port is from The Top of the Cylinder.
- 7) Calculate Blowdown Degrees / Time in Milliseconds, using RPM, Exhaust Degrees ATDC and Transfer Degrees ATDC.
- 8) Calculate Dynamic Compression Ratio and Trapped Volume from Compression Ratio, Bore, Stroke, Distance of Exhaust Port from top of Cylinder, and Piston to Deck Clearance.
- 9) Calculate Compression Ratio from Dynamic Compression Ratio, Stroke, Distance of Exhaust Port from top of Cylinder, and Piston to Deck Clearance.
- 10)Calculate Distance to Exhaust Port from top of Cylinder from Compression Ratio from Dynamic Compression Ratio, Stroke, and Piston to Deck Clearance.

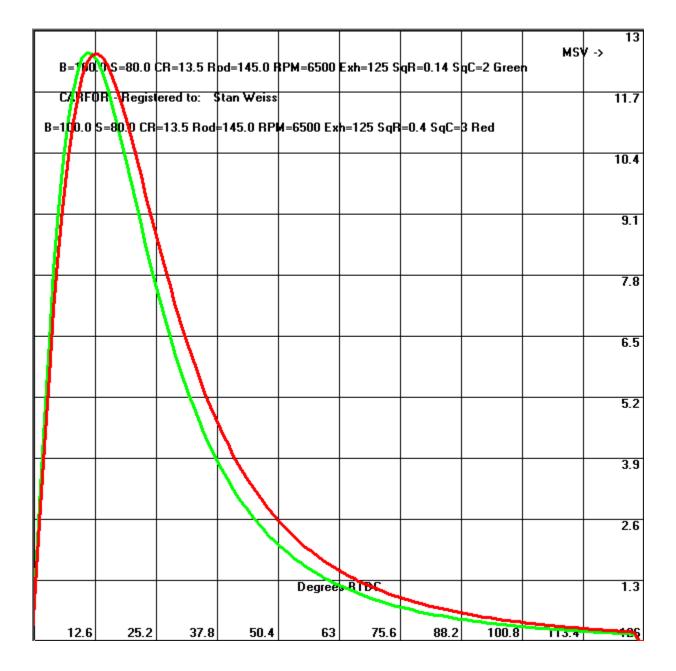
- 11)Calculate Exhaust Port Time Area and Angle Area, using Stroke, Bore, Time Port open in Milliseconds and Total Port Area.
- 12)Calculate Boost Port Time Area and Angle Area, using Stroke, Bore, Time Port open in Milliseconds and Total Port Area.
- 13)Calculate Transfer Port Time Area and Angle Area, using Stroke, Bore, Time Port open in Milliseconds and Total Port Area.
- 14)Calculate Average Piston Speed, and BMEP from Horsepower, number of cylinders, Bore, Stroke and RPM.
- 15)Calculate Squish and Piston areas from Bore and Squish Ratio.

16)Calculate Squish Volume from Squish Areas and Squish Clearance. NOTE: These next 2 Functions ONLY Works in Metric Mode.

- 17)Calculate Max Squish Velocity and at what Degrees by every .01 Degrees from Bore, Stroke, Rod Length, Compression Ratio, RPM, Exhaust Crank Degrees ATDC - Open, Squish Ratio, and Squish Clearance.
- 18) Calculate Max Squish Velocity and at what Degree by every Degree from Bore, Stroke, Rod Length, Compression Ratio, RPM, Exhaust Crank Degrees ATDC - Open, Squish Ratio, and Squish Clearance.

NOTE: MSV is a function of combustion chamber / squish geometry. Some factors, which will increase MSV, are:

- a) Increase in RPM
- b) Increase squish area ratio
- c) Decrease squish clearance
- d) Lower CR
- e) Shorter Rod
- f) Lower Intake Port


The reverse of these will decrease MSV. N/A engines will want more MSV than engines that have had boost or N2O added to them and the more boost or N2O added the lower MSV should be.

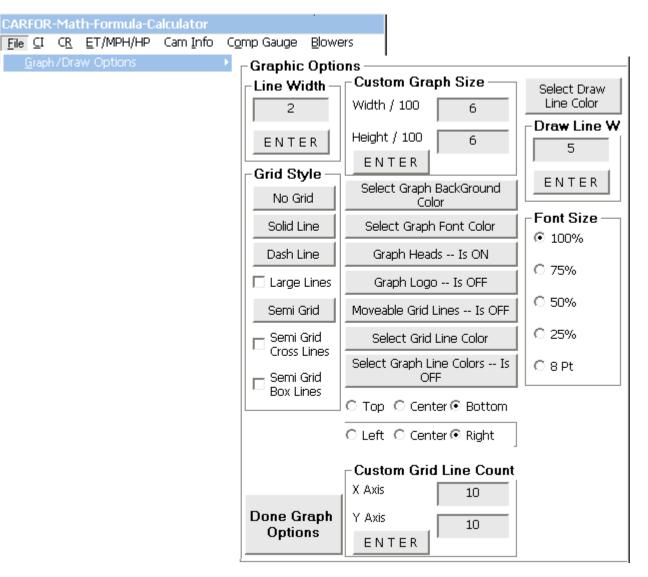
- 19) Estimate Inlet, Exhaust, Transfer, and Blowdown TA's from BMEP.
- 20)Estimate Inlet, Exhaust, Transfer, and Blowdown TA's from HP, RPM, number of cylinders, and Engine Size.
- 21)Graph (MVS 1) Squish Velocity by Degree from Bore, Stroke, Rod Length, Compression Ratio, RPM, Exhaust Crank Degrees ATDC Open, Squish Ratio, and Squish Clearance.
- Graph (MVS 2 +) Squish Velocity by Degree from Bore, Stroke, Rod Length, Compression Ratio, RPM, Exhaust Crank Degrees ATDC - Open, Squish Ratio, and Squish Clearance. This lets the user graph second or more MVS on the same graph started by MVS 1.

Note – Compression Ratio is also known as Uncorrected Compression Ratio.

This method compares the volume above the piston at Bottom Dead Center (BDC) to the volume above the piston at Top Dead Center (TDC).

Note – Dynamic Compression Ratio is also known as Corrected Compression Ratio or Trapped Compression Ratio. This method compares the volume above the piston at the point on the upstroke that the exhaust port is fully closed to the volume above the piston at Top Dead Center (TDC).

GRAPHER

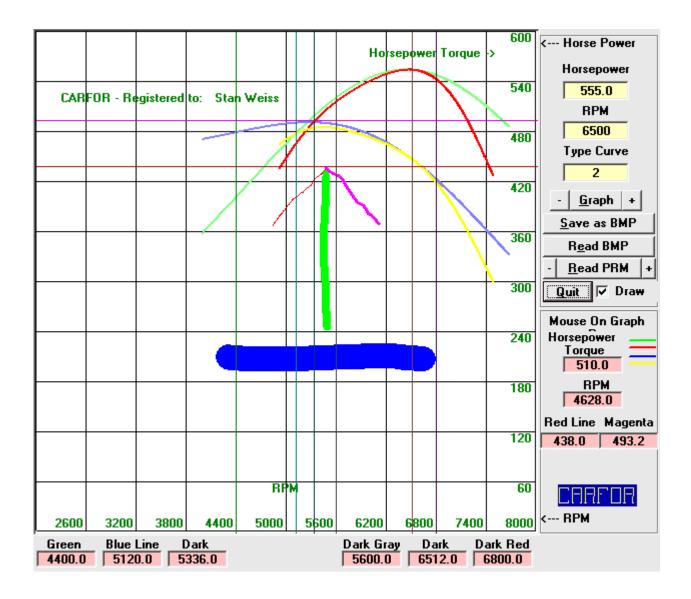

User Commands

Graph - The user enters the horsepower and RPM and then selects different curve types to find which one best matches his engine. The curve is displayed with a baseline line curve. The + plus lets the user zoom in and the - minus lets the user zoom out.

Save as BMP - Will save the graph to disc in BMP format.

Read BMP - Will Read in (Open) a BMP graph from the disc.

Read PRM - Will Read in (open) a parameter file that has graphing commands - see next page (User drawn graphics).



The user can customize the Graph and Draw Functions.

Placing the mouse on the graph will let the user get the Horse Power or Torque and RPM values for that position on the graph, these values will be updated as the user moves the mouse along the curve.

If the **Draw Box is checked** you can use the mouse to draw on the Graph. Using different size and color lines to create shapes, like the arrow below - next page.

188 - CARFOR Performance Software by Stan Weiss / World Wide Enterprises

User Drawn Graphics

The Green line is the Torque curve and the Yellow line is the Horse Power curve from data extracted from a *.dyn file. There is a **sample file** included called "graph2021.prm".

User Commands – Note commands maybe in either upper or lower case.

Overlay – If used the overlay keyword MUST be the first line in the parameter file - it means to plot these points without cleaning the graph screen.

Grid x I = 18 – This will set the number of grid line on the X Axis to 18 the default is 10.

Grid y I = 14 - This will set the number of grid line on the Y Axis to 14 the default is 10.

Xlow = 0 - This is the lowest x value which will show on the graph.

Xhigh = 10500 - This is the highest x value which will show on the graph.

Ylow = 0 - This is the lowest y value which will show on the graph

Yhigh = 550 – This is the highest y value which will show on the graph

These will be ignored if you use the overlay parameter. They are also used to calculate the x and y display numbers

Reset = -- sets the current position on the graph to xlow, ylow

Color = red – sets the current drawing color which can have a value of white, black, green, blue, cyan, magenta, yellow – brown, chocolate, dark blue, dark cyan, dark gray, dark green, dark red, light blue, light cyan, light gray, light green, light yellow, orange

Drawwidth = 1 – This sets the width of the line in pixels.

Drawstyle = 2 - This sets the style of the line, but only works when drawwidth = 1. Values maybe 0 = solid, 1 = Dash, 2 = Dot, 3 = Dash-Dot, 4 = Dash-Dot-Dot,

Caption1 = Caption1 -- Supported Color – This lets the user print a caption on the graph.

Caption6 = Caption6 – This lets the user print a second caption line on the graph.

Caption2 = Caption 2 – This lets the user print a caption for the x-axis on the graph.

Caption3 = Caption 3 – This lets the user print a caption for the x-axis mouse readout on the graph.

Caption4 = Caption 4 – This lets the user print a caption for the y-axis on the graph.

Caption5 = Caption 5 – This lets the user print a caption for the y-axis mouse readout on the graph.

Caption11 to Caption20 – This lets the User add Text to the Graph

Line to = 5000,700.0 - draw a line to x, y from the current position and set the current position to x, y

```
Line = 30,50,5621.7,500 - draw a line from x, y, to x1, y1

Circle = 5250,425,800[, 1] - draw a circle at x, y, radius [, height width ratio]

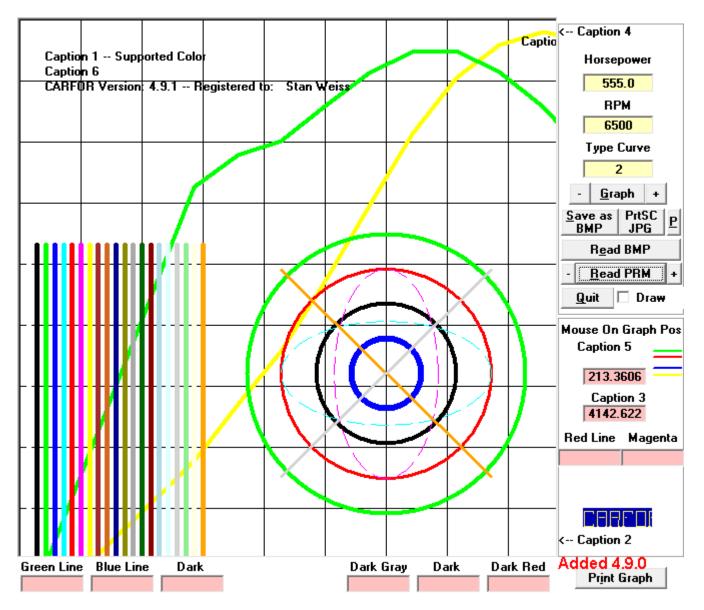
Check graph below to see how those ellipses were drawn

Color = cyan

Circle = 5250,425,2400,5 - ellipse

Color = magenta

Circle = 5250,425,2400,2 - ellipse


x scale
```

y scale

x shift y shift

yonnt

Note: These 4 only work when using the "overlay" parameter. I changed the Logic so the x and y points will be scaled and or shifted by these amounts.

NOTE: reading in the file GRAPHN.PRM generated this graph

By changing Fuel Pressure this will work for both a	Fuel Pressure 6.0	Warning
Carb (low pressure) and EFI (high pressure) setup.	Nitrous 950	Always read and follow the instructions that came with your nitrous kit.
Specific Gravity of Gas	Nitrous Jet 0.024	This is a starting point and final tuning has to be done using an oxygen sensor, or EGT exhaust gas temperature or reading your spark plugs.
Number of 8 Cylinders	Number of 8 NO Jets	It is up to the user to ensure that no damage will result from as a result of following these instructions.
Timing Retard 0.0	Plug Heat Range Colder	Baseline calculations at 950 psi bottle pressure and fuel specific gravity of .740 and pressure at 6 psi.
Horse Power 0.0	Fuel (Gas) Jet 0.0	Methanol Jet 0.0 Ethanol Jet Size 0.0
Number of Fuel Jets 8	Flow / Fuel 0.0	Specific Gravity 0.790 Specific Gravity of 0.790 Ethanol 0.790
Stage II		E85 Jet Size 0.0
Number of Fuel Jets 2	Fuel (Gas) Jet Size 0.048	Specific Gravity 0.780
Euel Jet Size/NO HP	tandard C Base 1 C Base	1.26 C Base 0.7 C Base K-Y C Base K-Y 5.5
Flow / Fuel Jet Size Flo	ow Jet Size 2 Stages Conve	rt Gas Jet Size Fuel Pressure Nitrous Jet Size Quit

Nitrous Jet Size / HP

- - X

Nitrous Jet Size / HP

- Calculate Horse Power, Timing Retard in Degrees, Plug Heat Range Change, and Fuel Jet Size using Fuel Pressure, Nitrous Pressure, Nitrous Jet Size, and Number of Nitrous Jets used. Note: - The number of Cylinders in ONLY used in Calculating Timing Retard in Degrees and Spark Plug Heat Range Change.
- 2) Calculate Flow / Fuel Jet Size needed to simulate the flow at your Jets / Nozzles so that fuel pressure can be set, using Fuel (Gas) Jet Size and Number of Fuels Jets.
- 3) Calculate Flow / Fuel Jet Size needed to simulate the flow at your Jets / Nozzles for TWO Stages so that fuel pressure can be set, using Fuel (Gas) Jet Size and Number of Fuels Jets Plus 'Stage II' Fuel (Gas) Jet Size and Number of Fuels Jets.
- 4) Convert Gas Jet Size using Specific Gravity of Gas, Specific Gravity of E85, Specific Gravity of Ethanol, and Specific Gravity of Methanol giving E85, Ethanol, and Methanol Fuel Jet Sizes.
- 5) Calculate Fuel Pressure from Fuel Jet Size and Nitrous Jet Size and Nitrous Pressure.
- 6) Calculate Nitrous Jet Size, Timing Retard in Degrees, Plug Heat Range Change, and Fuel Jet Size using Fuel Pressure, Nitrous Pressure, Nitrous HP, and Number of Nitrous Jets used. NOTE: Number of Cylinders is ONLY used in Calculating Timing Retard in Degrees and Plug Heat Range Change.

NOTE: For #2 and #3 above - This one jet will have the same area as all of your fuel jets combined. You can only use this method if your set up has a dedicated fuel pump for the nitrous system(s).

Select the Radio Button for the type of Nitrous System that you have.

Standard - This will calculate values that are the same as most web calculator.

Base 1 - This will calculate values that are like many NOS Fogger systems also Nitrous Express (NX) plate, Speedtech plate and Nitrous Pro-Flow plate.

Base 1.26 - This will calculate values that are like many Nitrous-Oxide Systems (NOS) Cheater systems.

Base 0.7 - This will calculate values that are like some Cheater systems Nitrous Works plate and ZEX plate.

192 - CARFOR Performance Software by Stan Weiss / World Wide Enterprises

Base K-Y - This will calculate values that can be on the lean use great care.

Base K-Y 5.5 - This will calculate values that can be on the lean use great care.

By changing Fuel Pressure this will work for both a Carburetor (low pressure) and EFI (high pressure) setup.

Always read and follow the instructions that came with your nitrous kit.

It is up to the user to ensure that no damage will result from as a result of following these instructions.

TOOLS

CARFOR-Math-Formula-Calculator				
File CI CR ET/MPH/HP Cam Info Comp Gauge				
Blowers Air Fuel 2-S Exhaust Gear Acceleration				
Chassis Springs Weather Grapher 2-S Port Timing				
Unit Conversion Equivalence Charts About Nitrous				
Tools Generate Cam File				
Convert Cam File Inches to MM				
Convert Cam File MM to Inches				
Increase / Decrease Cam Lift a Fixed %				
Increase / Decrease Cam Lift a Fixed Amount				
Convert Cam Dr C"x" file to a CMM File / Format				
Convert "S96" file(s) to a CMM File / Format				
Convert PRT / Delimited File for Acceleration User Selected Fields - RPM and Torque				
Convert PRT / Delimited File for Acceleration / Dyno Sheet User Selected Fields - RPM, Torque, Fuel, BSFC, and A/F				
Convert PRT / Delimited File for Acceleration User Selected Fields - RPM and HP				
Convert PRT / Delimited File for Graphing User Selected Fields - X-Axis and Y-Axis				
Convert DYN (DeskTop Dyno) / CQU (Comp Cams CamQuest) / DYM (Dynomation) File for Acceleration				
Reverse Axis for CARFOR Graphing File / PRM				

GENERATE CAM LIFT FILE

Cam Lift File Generator	r							
l (H H)	ΊЊ	Sort by Lift>	Lift	Duration	Open	Close	Cam Re Open	eport Close
	USER MUST Sup	ply .000 Duration>	> .000	350	0.0	350	48	95
UST HAVE .000 Duration and	d Max Lift - Other I	nputs are Ignored	.006	0	0	0	31.5	75.3
Polynomial 11th Polyno	mial 11th Dw	Polynomial 9th	.010	0	0	0	0	0
Polynomial 7th Polyno	omial 5th Po	olynomial 5th N2	.020	304	23	327	19.6	62
Polynomial 7th Polyno		orynomial Strinz	.050	270	40	310	5.6	47.6
Polynomial 5th N1 Poly	nomial 3th Po	lynomial 3-4-5	.100	236	57	293	-10	31.1
		1	. 150	0	0	0	-24.2	16.4
Double Harmonic 1 Do	ouble Harmonic 2		.200	187	81.5	268.5	-39.4	0.9
Harmonic Sinusoidal Pol	lynomial 3-4-5-6-7		.250	0	0	0	-57.1	-17
			.300	137	106.5	243.5	-82.8	-43.1
Cycloidal (Purdue) Pol	lynomial 3-4-5-6-7		.350	0	0	0	0	0
			.400	0	0	0	0	0
M E Ratio .005	Modified Ellipse		.450	0	0	0	0	0
			.500	0	0	0	0	0
Asymmetrical ,000 Durat	tion 370		.550	0	0	0	0	0
Polynomial 3-4-5-6			.600	0	0	0	0	0
Polynomial 3-4-3-6 Co	onstant Lash Ramp	Constant Lash Ramp User Rate	.650	0	0	0	0	0
a			.700	0	0	0	0	0
● V-1 ○ <mark>A</mark> - ○ J-3 ○ S	S-4 U = U P-6	Constant Lash Ramp User Rate	.750	0	0	0	0	0
Tappet / Bucket .842	Every x Degre		.800	0	0	0	0	0
Diameter		r 🗖 Output	.850	0	0	-	0	
Max Velocity .007	· ·	S96 File	.900	0	0	0	0	0
Calculate Max Velocity	Data Generation	Method	1.000	0	0	0	0	0
Calculate Min Diameter	Poly C Spline			<- Max Lift MUS	-		-	1 -
	Generate Curve Dat	a 2 Metric	Generate Lift [1	ift Data O C	Calculate from	n Cam Repo
						Sort by Dura	tion	
								Quit

Generate Lift Data – This option will generate a Cam Lift data File "CMM" from a limited number of data point, but cannot generate an asymmetrical lobe.

Generate Lift Data O(pen) C(lose) – This option will generate a Cam Lift data File "CMM" from a limited number of data point, and can be used to generate an asymmetrical lobe.

Calculate from Cam Report - Open and Close information from Cam Analyzer Reports. This will calculate Open and Close points to do Asymmetrical Cam lobe generation.

This is in no way able to reverse engineer the true measured cam lift / degree data but, it does let some comparison be done between different lobes. This is **NOT** a Cam Lobe Design Tool and it does not replace measuring the actual Cam with something like a Cam Doctor or a Dial Indicator and Degree Wheel.

Calculate Max Velocity – This option will calculate the max velocity measured at the lifter measured in inch per degree of cam rotation.

Calculate Min Diameter – This option will calculate the min tappet diameter needed for the entered velocity measured at the lifter measured in inch per degree of cam rotation.

194 - CARFOR Performance Software by Stan Weiss / World Wide Enterprises

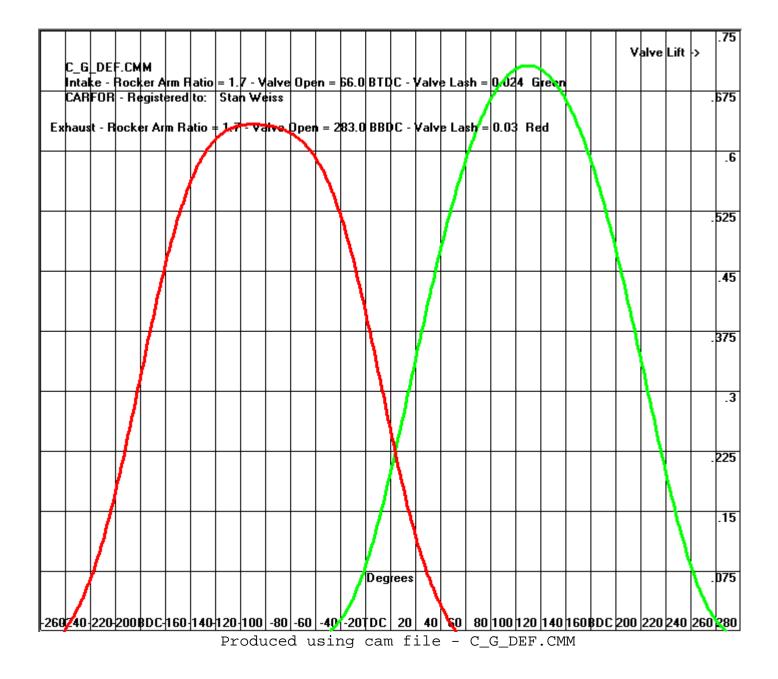
Generate Curve Data - Unlike generating Cam data this does not sequence checking

Generate Curve Data 2 – Unlike generating Cam data this does not sequence check the lift data column and also writes both data files to the output file.

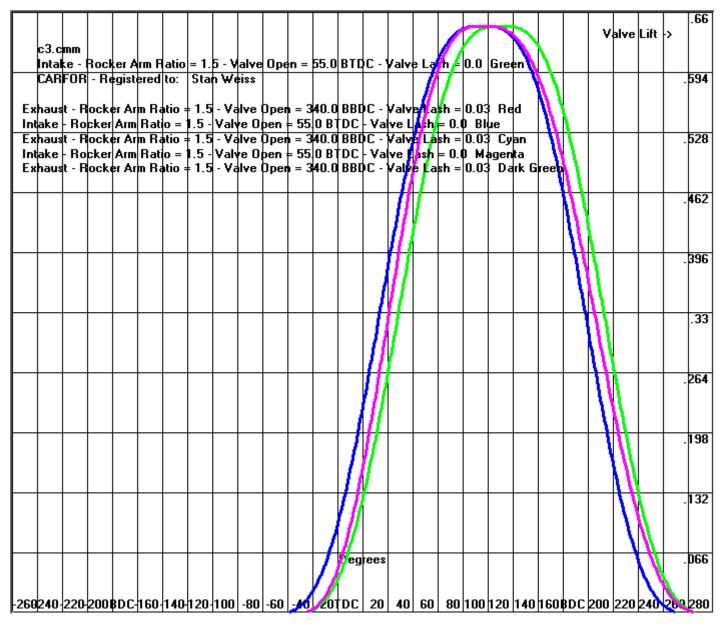
Sort Lift Duration – Lift will be sorted into ascending order. (Duration for each lift is also moved).

Intake ——			
Open BTDC	65.0	CenterLine	110
Close ABDC	105.0	Duration	350
Cam Lift	0.4	Valve Lift	0.6
Rocker Ratio	1.5	Lash	0.024

Using the Camshaft screen with the .000 duration and wanted ICL we can get a starting point for Degrees BTDC Intake Open of 65.


If you entered these values and generated an exhaust lobe, you would need to edit the generated CMM file by removing the "every x degrees = 1" line and changing the word "intake" to "exhaust". You would then append this file to the end of the file that you generated for the intake lobe.

Using the following Intake and Exhaust point will produce a 110 LSA with a 110 ICL.


-Port Time Area					
Intake Rocker Arm Ratio	1.7				
Intake Lash	0.024	-Exhaust—			
Degrees BTDC Intake Open	66.0	Open BBDC	107.5	CenterLine	110
Exhaust Rocker Arm Ratio	1.7	Close ATDC	67.5	Duration	355
Exhaust Lash	0.03	Cam Lift	0.4	Valve Lift	0.6
Degrees BBDC Exhaust Open	283.0	Rocker Ratio	1.5	Lash	0.03

Using the Camshaft screen with the .000 duration and wanted ECL we can get a starting point for Degrees BBDC Exhaust Open by taking the 107.7 and adding 180. \blacktriangleright 107.5 + 180 = 287.5.

Constant Lash Ramp – This option will generate an open and close lash ramp. The .000 duration will be the length of the ramp and max lift will be the height of the ramp. There are 6 different styles based on which radio button is clicked. V-1 is a Constant Velocity, A-2 is a constant Acceleration and so on.

Example of Asymmetrical Cam

Produced using cam files - C3.CMM and C300_360

The Green line from a "CMM" file produced using a 330 .000 Duration and .430 max lift with the Cycloidal option. The Blue line is the same "CMM" file advanced 15 degrees. The Magenta line a "CMM" file produced using a 300 .000 Duration with the Asymmetric Box checked and 360 Asymmetric .000 Duration and .430 max lift with the Cycloidal option. While this curve has the same opening and closing points as the Green line, it has the centerline as the Blue line.

Using .450" max lift What .000" lift duration is needed to product 280 degrees @ 0.050" lift for each different type.

Note all are displayed using a 110 ICL

Note all	are displayed us:	ing a 110	ICL	
Polynomi Cam	al 7th Degree - 3 Lift Opens Deg BTDC 0.00600 56.09 0.01000 51.42 0.02000 43.67 0.04000 33.70 0.05000 29.86 0.10000 15.15 0.15000 3.66 0.20000 -6.64 0.25000 -16.61 0.30000 -26.91 0.35000 -38.40 0.40000 -53.11 0.45000 -108.75 Minor Intensity 2	Closes Deg ABDC 96.59 91.92 84.17 74.20 70.36 55.65 44.16 33.86 23.89 13.59 2.10 -12.61 -68.25	25 Duration 332.68 323.34 307.83 287.90 280.22 250.80 227.82 207.22 187.28 166.69 143.70 114.28 3.00	Area 44.34 44.31 44.19 43.90 43.72 42.61 41.23 39.50 37.27 34.24 30.65 25.00 0.90
Polynomi Cam	al 5th Degree - 3 Lift Opens Deg BTDC 0.00600 56.57 0.01000 52.16 0.02000 44.54 0.04000 34.33 0.05000 30.30 0.10000 14.46 0.15000 1.79 0.20000 -9.68 0.25000 -20.82 0.30000 -32.29 0.35000 -44.96 0.40000 -60.80 0.45000 -108.97 Minor Intensity 2	Closes Deg ABDC 96.57 92.16 84.54 74.33 70.30 54.46 41.79 30.32 19.18 7.71 -4.96 -20.80 -68.97 43.72	Duration 333.13 324.32 309.08 288.66 280.60 248.91 223.58 200.64 178.36 155.42 130.08 98.40 2.06	Area 42.61 42.57 42.47 42.14 41.96 40.76 39.27 37.17 34.68 31.65 27.43 21.40 0.45
Polynomi Cam	al 3th Degree - 3 Lift Opens Deg BTDC 0.00600 54.46 0.01000 50.85 0.02000 44.05 0.04000 34.07 0.05000 29.91 0.10000 12.68 0.15000 -1.80 0.20000 -15.20 0.25000 -28.30 0.30000 -41.70 0.35000 -56.18 0.40000 -73.41 Minor Intensity	Closes Deg ABDC 94.46 90.85 84.05 74.07 69.91 52.68 38.20 24.80 11.70 -1.70 -16.18 -33.41	Duration 328.92 321.69 308.10 288.14 279.83 245.37 216.40 189.60 163.40 136.60 107.63 73.18	Area 39.69 39.66 39.56 39.26 39.08 37.84 35.97 33.70 30.79 26.93 22.37 16.00
Cam	Minor Intensity - Major Intensity : al 5th Degree N2 Lift Opens Deg BTDC 0.00600 51.56 0.01000 48.35 0.02000 42.39 0.04000 33.78 0.05000 30.24	28.27	Duration	Area 43.11 43.07 42.98 42.74 42.57

198 - CARFOR Performance Software by Stan Weiss / World Wide Enterprises

0.10000	15.70	55.70	251.39	41.53
0.15000	3.57	43.57	227.14	40.06
0.20000	-7.68	32.32	204.65	37.96
0.25000	-18.78	21.22	182.44	35.47
0.30000	-30.37	9.63	159.27	32.45
0.35000	-43.30	-3.30	133.41	28.23
0.40000	-59.62	-19.62	100.76	21.83

Minor Intensity 36.23 Major Intensity 24.31

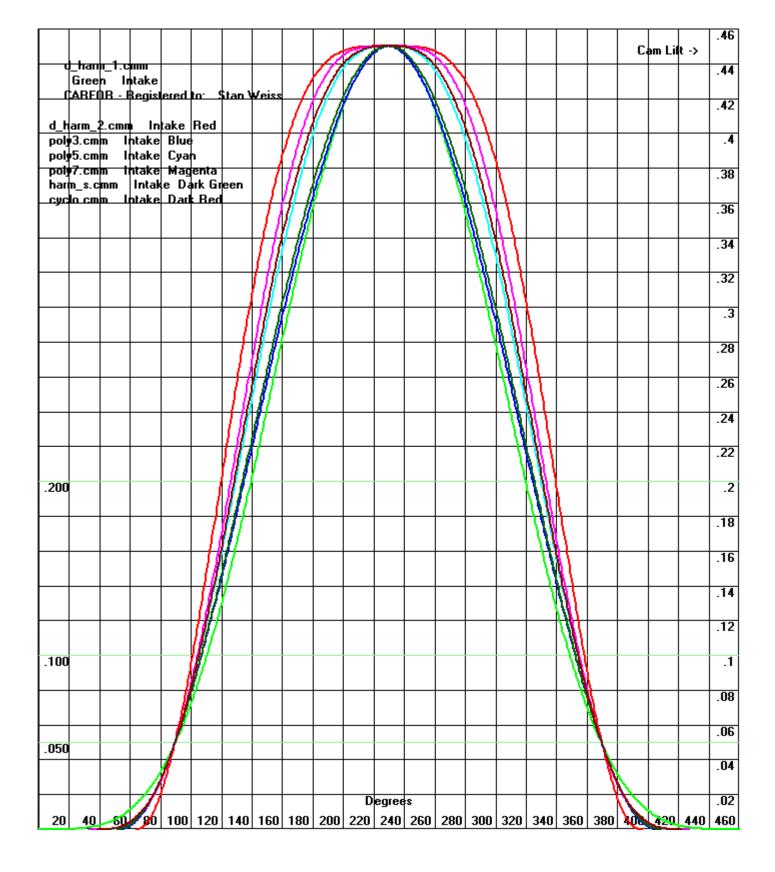
Double	Harmonic 1	- 458 -	119.5		
Cam	Lift	Opens	Closes	Duration	
cum	HILC	Deg BTDC	Deg ABDC	Durución	Area
	0.00600	68.96	108.96	357.92	38.81
	0.01000	61.71	101.71	343.43	38.75
	0.02000	49.96	89.96	319.92	38.58
	0.04000	35.29	75.29	290.59	38.14
	0.05000	29.77	69.77	279.55	37.91
	0.10000	9.17	49.17	238.35	36.37
	0.15000	-6.32	33.68	207.36	34.51
	0.20000	-19.77	20.23	180.46	32.07
	0.25000	-32.39	7.61	155.23	29.38
	0.30000	-44.96	-4.96	130.08	25.81
	0.35000	-58.36	-18.36	103.28	21.59
	0.40000	-74.30	-34.30	71.41	15.59
	0.45000	-109.50	-69.50	1.00	0.45

Minor Intensity 63.88 Major Intensity 40.37

Double	Harmonic 2	> _ 330 _ 1	55		
Cam	Lift	Opens	Closes	Duration	
		Deg BTDC	Deg ABDC		Area
	0.00600	46.41	87.41	313.83	46.61
	0.01000	43.88	84.88	308.76	46.59
	0.02000	39.20	80.20	299.40	46.53
	0.04000	32.43	73.43	285.86	46.33
	0.05000	29.64	70.64	280.27	46.19
	0.10000	18.15	59.15	257.31	45.39
	0.15000	8.50	49.50	238.00	44.15
	0.20000	-0.56	40.44	219.88	42.58
	0.25000	-9.65	31.35	201.70	40.56
	0.30000	-19.34	21.66	182.31	37.80
	0.35000	-30.51	10.49	159.98	34.21
	0.40000	-45.35	-4.35	130.30	28.56
	0.45000	-109.00	-68.00	3.00	0.90

Minor Intensity 28.49 Major Intensity 19.12

Harmonic	Sinusoid	lal - 356	- 68.5		
Cam	Lift	Opens	Closes	Duration	
		Deg BTDC	Deg ABDC		Area
	0.00600	55.39	95.39	330.78	40.25
	0.01000	51.55	91.55	323.09	40.22
	0.02000	44.43	84.43	308.86	40.10
	0.04000	34.20	74.20	288.39	39.80
	0.05000	29.99	69.99	279.99	39.62
	0.10000	12.88	52.88	245.75	38.37
	0.15000	-1.24	38.76	217.51	36.64
	0.20000	-14.19	25.81	191.62	34.38
	0.25000	-26.81	13.19	166.38	31.45
	0.30000	-39.76	0.24	140.49	27.86
	0.35000	-53.88	-13.88	112.25	23.30
	0.40000	-70.99	-30.99	78.01	16.90
	0.45000	-109.50	-69.50	1.00	0.45


Minor Intensity 43.11 Major Intensity 28.88

Cycloidal (Prudue	e) - 382 -	81.5		
Cam Lift	Opens	Closes	Duration	
	Deg BTDC	Deg ABDC		Area
0.00600	57.08	97.08	334.16	43.16
0.01000	52.40	92.40	324.81	43.12
0.02000	44.49	84.49	308.98	43.00
0.04000	34.13	74.13	288.26	42.70
0.05000	30.10	70.10	280.20	42.52
0.10000	14.53	54.53	249.06	41.43
0.15000	2.30	42.30	224.60	39.81
0.20000	-8.68	31.32	202.64	37.88
0.25000	-19.32	20.68	181.36	35.63
0.30000	-30.30	9.70	159.40	32.61
0.35000	-42.53	-2.53	134.94	28.38
0.40000	-58.10	-18.10	103.80	22.72
0.45000	-109.50	-69.50	1.00	0.45

Minor Intensity 44.61 Major Intensity 28.78

Polynomial 3-4-5	-6 - 388.5	- 84.5		
Cam Lift	Opens	Closes	Duration	
	Deg BTDC	Deg ABDC		Area
0.00600	59.92	99.42	339.34	39.92
0.01000	54.95	94.45	329.40	39.88
0.02000	46.35	85.85	312.21	39.75
0.04000	34.80	74.30	289.09	39.42
0.05000	30.23	69.73	279.95	39.21
0.10000	12.23	51.73	243.95	37.89
0.15000	-2.18	37.32	215.13	36.08
0.20000	-15.21	24.29	189.08	33.81
0.25000	-27.81	11.69	163.88	31.00
0.30000	-40.68	-1.18	138.13	27.42
0.35000	-54.69	-15.19	110.13	22.86
0.40000	-71.64	-32.14	76.23	16.46

Minor Intensity 49.45 Major Intensity 32.25

UNIT CONVERSION

Pressure	Volume	Force		Input Value
• PSI	C Cubic CentiMeters (cc)	⊂ ft-lb	⊖ in-lb	6.53478
C " Mercury	Cubic Inches	O N-m	Om-kg	
🔿 " Water	C Fluid Ounces	Energy		Con
C kPa C mm Water	Weight ———	O BTU	⊂ ft-lb	
	C lb C Ounces	C kW-hr	O Joules	
C cm of Mercury	○ N (Newton) ○ kg	C Calorie	O HP-hr	
⊂ kg/cm^2	C Grams C MilliGrams	Gas Flov	N	
Omillibars OBars	Acceleration —	C CFM	C ci/min	
C Inches of Vacuum	○ ft/s^2 ○ M/s^2	○ LPM	C cc/min	
C Absolute PSI	○ in/s^2 ○ cm/s^2	© M^3/s	C Gram/s	
Length ———	C mm/s^2	Area —		
Ö MilliMeters (MM)	Temperature ——	C Sq Ft	🔿 Sq In	
C Microns C CM	○ Fahrenheit ○ Celsius	○ Sq CM	○ Sq mm	
○ Meters ○ Kilometers	C Rankine C Kelvin	🔿 Sq M		
⊂ Mils ⊂ Inches	Density ———			
	○ kg/m^3 ○ g/cm^3			
⊖ Feet ⊂ Miles	○ lb/ft^3 ○ lb/in^3			
C Knots				
			Quit	4

NOTE: Gram/sec Air Density was set using a Barometric Pressure of 29.92, Temperature 70 Degree F, Humidity 30%

EQUIVALENCE CHARTS

quivalence Charts		
Decimal <> Fraction	.1 PSI> kPa	10 Grams> Oz
Number Drill Sizes in Decimal	1 PSI> kPa	Tap> Drill Size
Alpha Drill Sizes in Decimal	.1 kPa> PSI	Pipe Tap> Drill Size
All Drill Sizes in Decimal	1 kPa> PSI	Metric Tap> Drill Size
Decimal .001 Inches> Metric (MM)	10 kPa> PSI	Basic Numbering System - SAE Steels
Decimal .01 Inches> Metric (MM)	1 Lb Ft> N-M (Newton - Meter)	AN Dash Size
Decimal .1 Inches> Metric (MM)	10 Lb Ft> N-M (Newton - Meter)	
Decimal Inches> Metric (MM)	1 N-M (Newton - Meter)> LbFt	Quit
Metric .001 MM> Decimal Inches	10 N-M (Newton - Meter)> LbFt	CARFOR
Metric .01 MM> Decimal Inches	.01 Oz> Grams	
Metric .1 MM> Decimal Inches	Oz> Grams	
Metric 1 MM> Decimal Inches	.1 Grams> Oz	
Metric 10 MM> Decimal Inches	Grams> Oz	

Trouble Shooting:

This program is written in Microsoft's Visual Basic (VB) programming language. This means you must have the VB runtime DLL on you system. I have found only a small number of people have not had this file. If you need this file it can be found on my web site.

- License for the registered version is not transferable.
- Standard delivery is by email. Please add \$5.95 USA \$10.95 International for shipping and handling if you want a CD-ROM.

DISCLAIMER of Warrent:

This program is supplied AS IS without any warranty, expressed or implied of any kind. In no case is Stanley R. Weiss or World Wide Enterprises liable for any damages resulting from your use of this program. The entire risk arising out of the use of the software or documentation remains with the user.

Stanley R. Weiss / World Wide Enterprises entire liability will be, to attempt to correct or help you work around errors, replace the software with a new version, or to refund the purchase price.

Please sent comments about this program or suggestions for updates to:

Stan Weiss / World Wide Enterprises 1306 Wells Street Philadelphia, PA 19111-4922 E-mail: <u>srweiss1@comcast.net</u>

You can always get the latest User's Manual from my Web Site in PDF format <u>http://www.magneticlynx.com/carfor/carfor.pdf</u>

DISCLAIMER

This code is released with the restriction as to its use.

1. The program must not be modified in any way.

The author has taken due care in writing this code, and the code is supplied "AS IS". The author makes no expressed or implied warranty of any kind with regard to this code. In no event shall the author be liable for incidental or consequential damages in connection with or arising out of the use of this code.

Glossary / Definitions / Abbreviations

ABDC - After Bottom Dead Center

ABS - Anti-Lock Braking System - A system that is designed to stop the wheels from locking up when you apply the brake. Absolute Pressure - Pressure measured from a starting point of zero in perfect vacuum. Atmospheric Pressure is 14.696 PSI or 29.92 inches of mercury (in-Hg) at Sea level.

Absolute Zero - The point at which there is a total absence of heat, minus 459.67°F (-273.15°C).

Acceleration - The rate of change of velocity with time.

Advance Cam - The act of changing the cam position so that the IVO occurs earlier in the cycle.

Aerodynamic Drag - The resistance of the air to forward movement. This is a factor of the shape of the vehicle (coefficient of drag and frontal area).

Air-Fuel Ratio (A/F) - Is the weight of fuel divided by the weight of air fed to the engine, in the same period of time.

Air Pressure (Tires) - You can adjust a car's handling by raising or lowering air pressure in the tires. Flex in the sidewall acts like another spring in the suspension. Increasing the air pressure makes the overall spring rate stiffer, while lowering the pressure will make it softer.

Ambient Air Temperature - The temperature of the surrounding air.

Aspect Ratio - Is the ratio of a tires width to its height.

ATDC - After Top Dead Center, The position of the piston on its way down.

Back Pressure - Resistance of an exhaust system to the passage of exhaust gases. Amount of pressure that holds back the flow of the exhaust system.

Barometer - An instrument for measuring atmospheric pressure, usually in inches of mercury column.

Barometric Pressure – In this program it means uncorrected to sea level (absolute), or as read from a column of mercury. The higher the barometric pressure the more oxygen there is available for combustion.

BBDC - Before Bottom Dead Center

BDC - Bottom Dead Center

Blower - A device that forces additional air into the engine to increase its efficiency and horsepower.

Boost - The amount of pressure generated by the compressor of a turbo- or supercharger. Boost pressure is adjustable by a Waste Gate (turbocharger) or pulley size belt driven supercharger.

Boost Pressure - Pressure of air above atmospheric pressure, measured in PSI, or Bar. One bar is equal to the atmospheric pressure.

Bore - Is the diameter of the cylinder that the piston moves up and down in.

Bore Stroke Ratio - The ratio between the diameter of the cylinder bore and the length of the stroke.

Brake Bias - In most cars, pressing on the brake pedal applies a little more force to the front brakes than the rear. This is designed to take advantage of the fact that under braking, weight transfers to the front of the car.

Brake Fade - Brakes transform motion into heat. When the fluid in the brake system exceeds its boiling point due to hard use, bubbles can form and the brakes do not work properly.

BSFC – Brake Specific Fuel Consumption. Is the amount of fuel in Ibs / hr to produce 1 Horse Power. **Gasoline =** Pro Stock / Competition Eliminator 0.35-0.45 – High Compression 0.45-0.55 – Low Compression 0.50-0.60 – Super Charged / Turbo Charged 0.55-0.65. **Alcohol =** High Compression 0.90-1.10 – Low Compression 1.00-1.20 – Super Charged / Turbo Charged 1.10-1.30

BTDC - Before Top Dead Center.

BTU - British Thermal Unit - The quantity of heat required to raise one pound of water from 59°F to 60°F.

By Pass Valve - A pressure-release valve that relieves un-needed and potentially hazardous pressures created by the supercharger by recirculating it through the supercharger

Cam Advance / Retard - Is the number of degrees the Intake centerline has been moved. Advancing the camshaft will reduce the centerline and improve mid range torque. Retarding will increase the centerline and improve high-end horsepower. **Camber -** The outward (positive) or inward (negative) tilt of the wheels in degrees.

Cam Profile - The shape of each lobe on a camshaft. The profile determines the amount, of duration, or time the valve is open. It also largely determines the valve's maximum lift.

Camshaft - A shaft whose lobes push on valve lifters, rocker arms or the valves themselves to convert rotary motion into linear motion.

Carbon Fiber - Is a man made very expensive material that is lighter than aluminum, and stronger than steel.

Caster - The forward (negative) or rearward (positive) tilt of the wheels in degrees.

CC (cc) - Cubic centimeter

Center of Gravity (CG) - It is the center point of the vehicle's mass. That point in an object, if through which an imaginary pivot line were drawn, would leave the object in balance. The closer the weight is to the ground, the lower the center of gravity. **CFM** - Cubic Feet per Minute. Indicates how many Cubic Feet of air pass by a point in one Minute.

Chassis Dynamometer - A test stand to determine the power output at the wheels

CI (ci) - Cubic Inch

CNC - Computerized Numerical Control

Coefficient of Drag (CD) - The coefficient of drag is a function of factors like the shape of the vehicle. The number is determined in a wind tunnel or by a coast down test performed on the vehicle.

Coefficient of Friction - the drag factor of a vehicle or other object sliding on a surface, also designated by the Greek letter Mu.

Coil Bind - When a spring is compressed to the point that the coils touch.

Combustion Chamber - The space within the cylinder when the piston is ATDC. The top of the piston and a cavity in the cylinder head forms it.

Combustion Chamber Volume - The volume contained within the chamber of the cylinder head

Compressor Efficiency - is a measure of how well the compressor is able to compress air and how much heat it adds to the compressed charge.

Compression Gauge - Used to measure how much pressure a cylinder can create. Used in a Compression Test.

Compression Ratio (Static) - The ratio of the total volume enclosed in a cylinder when the piston is located at BDC compared to the volume enclosed when the piston is at TDC.

Compression Test - A test to see how much pressure a cylinder can create at cranking RPM. Also sometimes called **Cranking Pressure**.

Corner Weights - Is the distribution of a vehicle's weight among the four wheels. Adjustment of corner weights is very important to handling.

-Corrected Barometric Pressure – In this program it means the observed Barometric Pressure that has had the Vapor Pressure subtracted from it.

Cross Weight - Refers to diagonally static loading of the tires.

Curtain Area - Is the area defined by the valve diameter * PI * valve lift.

Data Acquisition - The use of sophisticated sensors, transmitters, computers and software to provide information on what the car and the driver are doing. The information is analyzed to improve vehicle performance.

Density - The weight per unit volume.

Density Ratio (DR) - This is a number computed from the pressure ratio, compressor efficiency and intercooler efficiency to show the actual increase in pressure.

Detonation - A condition in which, after the spark plug fires, some of the unburned air-fuel mixture in the combustion chamber explodes spontaneously, set off only by the heat and pressure of air-fuel mixture.

Dew Point - Is the temperature at which the air will be saturated (100% RH).

Discharge Coefficient - A ratio of the actual / measured flow to the theoretical flow through the **Curtain / Window Area**. Also called **Coefficient of Discharge**.

Distributor - A part of the ignition system that sends the high voltage to the correct cylinder / spark plug.

DOHC - Double Overhead Camshaft, A DOHC engine has two camshafts for each cylinder head. One camshaft operates the intake valves; the other actuates the exhaust valves.

DOT - (Federal) Department Of Transportation

Down Force - the use of aerodynamics to create downward pressure on the car's tires for improved traction.

Duration (Camshaft) - The number of degrees of crankshaft rotation, that a valve remains open.

Duty Cycle - The percentage of the time that the injectors are open is called the injector duty cycle.

Dynamic Compression Ratio – The ratio of the total volume enclosed in a cylinder when the piston is located at the point that the Intake valve closes compared to the volume enclosed when the piston is at TDC.

Dyno / Dynamometer - An engine testing device that measures power and simulates the loads and environment of a racing engine (engine dyno) or full vehicle (chassis dyno).

Dyno Correction Factor – So that horsepower and torque numbers can be compared when measured at different temperatures, humidity and Barometer reading. The problem is there is more than one SAE "Standard Day" or rather they have changed what a Standard Day is.

ECM - Electronic Control Module, The on-board computer that controls a vehicle's engine management systems.

ECU - Electronic Control Unit

EFI - Electronic Fuel Injection system.

EGR - Exhaust Gas Recirculation, A small portion of exhaust gases is recycled into the combustion chamber.

EGT - Exhaust Gas Temperature

EVC - Exhaust Valve Closing, The point at which the exhaust valve returns to its seat.

EVO - Exhaust Valve Opening, The point at which the exhaust valve lifts off of its seat.

Feet per second per second - the English unit of acceleration or deceleration.

Final Drive - Transmitting power to the driven wheel, usually by chain, shaft, or belt.

Flow Rate - The amount (mass, weight, or volume) of fluid flowing through a valve body per unit of time.

FMU - Fuel Management Unit

Four Link Suspension - Uses two upper and two lower link/control arms to connect the solid axle.

Fuel Cell - A bladder like container to hold the fuel and containing foam baffling. It is designed to be virtually puncture-proof, thus reducing the change of a fire.

Fuel Injection - A system that sprays fuel under pressure into the intake manifold or directly into the cylinder intake ports. **Fuel Injector** - A mechanical or electro-mechanical device that meters fuel into an engine.

Fuel Pressure - the pressure of the fuel in the line / rails between the regulator (if present) and the injectors.

Fuel Pressure Regulator - A device used to control the delivery of fuel at a constant pressure. The fuel pressure regulator is also adjusted based on the engine's boost pressure. As boost pressure rises by 1 PSI, the fuel pressure regulator causes the fuel pressure to rise by 1 PSI. This is done to stop the A/F fixture from leaning out.

Fuel Rails - A conduit to deliver fuel to the injectors.

G Force - The inertial force exerted as the car changes direction. One "G" is equal to the force of gravity. Which will produce an acceleration of 32.17 feet per second per second

Gear Ratio - The number of turns made by a driving gear to complete one full turn of the driven gear or the cumulative ratios for a series of gears.

GVWR - Gross Vehicle Weight Rating

H-Pipe - Two exhaust pipes, which have a tube going across in the shape of an H.

Head Gasket - Seals the cylinder head to the engine block.

Headers – Are constructed from steel tubing, they provide a smooth flow path from the exhaust port and replace the stock exhaust manifold.

Hertz - A frequency of one cycle per second.

Horizontally Opposed Engine - A layout in which the cylinders are placed at 180° to one another. It is also described as a flat or a boxer engine.

Humidity - Water Vapor content of the air.

IFS - Independent Front Suspension, with this type of suspension, the wheels travel independently of each other.

Ignition Timing - Spark timing expressed in crankshaft degrees, relative to top dead center.

Inch of Water - The pressure required to support a column of water one inch high. 27.68 inches of water is equal to one PSI. **Intake Centerline** - Is the number of degrees ATDC at which maximum lift occurs.

Intake Charge - The mixture of fuel and air that flows into the engine.

Intercooler - is a device used to reduce the charge temperature between the compressor and the engine, and uses either outside air (Air to Air) or water (Air to Water) to lower the temperature of the intake flow.

Intercooler Efficiency - The measure of how well the intercooler reduces the charge temperature.

IRS - Independent Rear Suspension, with this type of suspension, the wheels travel independently of each other.

IVC - Intake Valve Closing, The point at which the intake valve returns to its seat.

IVO - Intake Valve Opening, The point at which the intake valve lifts off of its seat.

Jerk - The rate of change of acceleration with time. In some applications it is expressed in units of inch /deg3 or thousandths/deg3.

Jet - An orifice who's inside diameter meters fuel.

Lateral Acceleration - The sideward acceleration of a vehicle in a horizontal plane. Because of centrifugal force, the vehicle is pushed outward in the corner / turn.

Lateral Load Transfer - The vertical load transfer from one of the front tires (or rear tires) to the other.

LCD - Liquid crystal display

Leaf Spring - Is an assembly of one or more long, thin, pieces of flat or slightly curved material.

Leak Down Test - Each cylinder is tested to see how well it holds pressure, and is used to find excessive wear in an engine. Limited Slip Differential - A differential having special friction mechanisms to keep both rear-axle shafts rotating at the same speed.

Linear Acceleration - is the acceleration of a vehicle in a straight line.

Linear Coil Spring Rate - A coil spring that by design has a constant deflection rate under load.

Lobe Separation Angle (LSA) / Lobe Centerline (LC) - Is the amount of degrees between the exhaust centerline and the intake centerline and is the only measurement here in camshaft degrees. In a single camshaft engine this angle is set at the time the camshaft is ground and cannot be changed. This angle will normally vary between 100 to 120 degrees.

Locking the Brakes - Engaging the brakes so hard that one or more wheels stops turning completely.

Longitudinal Load Transfer - The vertical load transferred from a front tire to the corresponding rear tire or vice versa. **Loose -** When in a turn the vehicles rear tires lose traction before the front tires.

Mach Number - Is the ratio of the actual velocity of the airflow to the velocity sound in the same medium.

Magneto - A high-voltage generator for the ignition system that does not require an external power source. **MAP -** Manifold Absolute Pressure

Motion Ratio - The relationship between the motion of the wheel and the motion of the spring. A motion ratio of 4:1 would make a spring rate of 400 lb./in. produce a wheel rate of 100 lb./in.

MSV - Maximum Squish Velocity see **Squish Velocity.** If MSV is to low the flame front will not burn the fuel air mixture effectively.

Multi Plate Clutch - A clutch assembly that uses more than one driving plate and more than one driven plate to connect the engine to the transmission. Normally more compact in size than a single disc unit.

Naturally Aspirated - An engine in which the charge air enters the cylinders because of atmospheric pressure.

Neutral Steer - When the front & rear tires give up traction at an equal rate.

NPT - National Pipe Thread

02 / Oxygen Sensor - A device found in the exhaust system, which generates a small voltage dependent on the amount of oxygen present in the exhaust gases.

OEM - Original Equipment Manufacturer.

OHC – OverHead Camshaft

OHV - OverHead Valve. The valves are located over the piston.

Oil Temperature - The temperature of the oil circulating through the engine.

Overlap - When both the exhaust valve and the intake valve are open, measured in crank degrees. The intake is starting to open while the exhaust is not yet closed.

Over Square - An engine with a greater bore than stroke.

Over Steer - When in a turn the vehicles rear tires lose traction before the front tires.

PCV - Positive Crankcase Ventilation, Relieves pressure and fumes from the crankcase.

Piston - A cylindrical part inside the cylinder that moves up and down, transferring the force of combustion to the connecting rod.

Piston Position – Is the distance from the top of the cylinder to the top of the piston.

Piston To Valve Clearance (PVC) - The distance between the intake and exhaust valves to the top of the piston.

Posi / Positraction - A differential having special friction mechanisms to keep both rear-axle shafts rotating at the same speed **Pulse Width -** The amount of time that an injector stays open is called the injector pulse width

Port Area - The cross-section area of the port.

Port Time Area - The amount of time and area required for a port to flow the necessary air at a specific rpm and BMEP.

The area of a port, divided by the displacement of one cylinder, and multiplied by the time that the port is open.

Port Timing - In 2-stroke engines the amount of time when ports are covered or uncovered by the piston in crankshaft degrees. **Pound Foot -** The unit of measurement for torque.

Pounds Per Square Inch (PSI) - English unit of pressure.

Pounds Per Square Inch Absolute (PSIA) - Absolute pressure equals gauge pressure plus atmospheric pressure.

Pounds Per Square Inch Gauge (PSIG) - The "g" indicates that it is gauge pressure and not absolute pressure.

Pressure Differential - The difference in pressure between two points in a system.

Pressure Drop - The difference between the inlet and outlet pressures.

Pressure Ratio (PR) - The ratio of outlet pressure over inlet pressure.

Primary Drive – This is mostly for Motorcycles where there is a chain or gear drive between the engine and transmission. **Pulse Width** - The number of engine revolution degrees that an injector is open to deliver fuel also stated in Milliseconds. **Push** - When in a turn the vehicles front tires lose traction before the rear tires.

Quench - See Squish

Quench Clearance - See Squish Clearance

Rake – When one end of the vehicle is lower than the other.

Ram Air - When fresh air is fed through the hood or underneath the vehicle and sent to the intake system.

Relative Humidity (RH) - Is the ratio (%) of the amount of water vapor in the air to the maximum amount of water vapor that the air can hold at that temperature.

Restrictor Plate - A plate that sits between the carburetor and the intake manifold of a motor with holes of a specific diameter cut through it. It restricts the amount of air entering the engine.

Retard Cam - The act of changing the cam position so that the IVO occurs later in the cycle.

Rev Limiter - Is used to keep the engine from exceeding its maximum RPM and exploding.

Ride Height - The distance from the bottom of the vehicle to the road.

Road Horsepower - The amount of power at the driving wheels needed to move a vehicle. This power varies according to the vehicle's speed, aerodynamic drag, mechanical friction, and the tires' rolling resistance.

Rocker Arm - A pivoting arm that acts as a lever to the open valves.

Rocker Arm Ratio – Is the distance from the fulcrum to the valve end center point divided by the distance from the fulcrum to the pushrod seat center point.

Rod Angle / Angularity – The angle formed by the connecting rod centerline and the bore centerline as the crankshaft rotates. **Rod Length -** Is the distance from the centerline of the wrist pin hole to the centerline of the crank journal hole. A longer rod will reduce the maximum **Rod Angle** while at the same time reducing the side loading of the piston against the cylinder wall. **Rod Stroke Ratio -** The ratio between the Rod Length and the length of the Stroke.

Roll Axis – A line through the front and rear roll centers.

Roll Center – The vehicle has a front and rear roll center. The roll center is a point about which that end of the vehicle rolls. A straight line running through them called the **Roll Axis** joins front and rear roll centers.

Roll Stiffness - The resistance, measured in pounds per inch of spring travel, of a suspension system to the rolling of the vehicle's mass.

Roll Stiffness Distribution - The distribution of the vehicle roll stiffness between front and rear suspension expressed as percentage of the vehicle roll stiffness.

Roller Cam - A camshaft that uses either hydraulic or mechanical roller lifters

RPM - Revolutions Per Minute

Run Out - The amount that a rotating part is out-of-round.

Saturation Vapor Pressure - Is the maximum amount of water (vapor pressure) the air can hold.

Scan Tool - A device that interfaces with a vehicle's computer, and communicates information to and from the computer.

Shock Absorber - A device used to help control the up, down, and rolling motion by dampening the oscillations the spring. **Short Track -** An oval track that is less than one mile in length.

Slicks - A racing tire with no tread.

SOHC - Single Overhead Camshaft, A SOHC engine has one camshaft for each cylinder head. This camshaft operates both the intake and exhaust valves.

Sonic Velocity - The Speed of Sound for a particular gas at a given inlet pressure and temperature.

Specific Gravity - Weight of a given volume of substance compared to that of an equal volume of water, which is assigned value of 1.0.

Speed of Sound - Is dependent on the temperature of the air or exhaust. In air on a standard day, the speed of sound is about 340 m/sec (~1110 ft/sec).

Speed Trap - A places where timing sensors are placed to detect cars passing by them. By measuring the distance between the timing sensors and the time it takes for a car to pass by them, speed can be calculated.

Spoiler - A strip on the rear deck lid. It is designed to create down force on the rear of the vehicle, to help increase traction.

208 - CARFOR Performance Software by Stan Weiss / World Wide Enterprises

Spring Rate - The relationship between load and deflection normally in pounds per inch.

Sprung Weight - The mass of the vehicle that is supported by the springs.

Squish - As the piston approaches top dead center on the compression stroke, the mixture is pushed out of the **Squish Area** and this promotes increased turbulence, and more efficient combustion. But too much turbulence can also create a problem. **Squish Clearance** - Distance between the top of piston and the deck of the cylinder head.

Squish Ratio - Is the ratio of the squish area to bore area and normally Varies from 30% - 60% of Bore area. **Squish Velocity** - Is the speed with which the mixture is pushed out of the squish area as the piston moves to TDC, normally this is shown in m/s. **MSV** is the **Maximum Squish Velocity**, which normally is between 5 and 10 degrees before TDC. **Standard Day** – There are 2 in use.

29.92 inches of Mercury at 60 degrees F and zero humidity (SAE J816) that was used back in the muscle car era.

29.23 inches of Mercury at 77 degrees F and zero humidity (SAE J1349) started being used in the early '70s. **Static Compression Ratio** – See **Compression Ratio**

Static Ride Height - The distance from the bottom of the vehicle to the road when the vehicle is not moving.

STP - Standard Temperature and Pressure See **Standard Day Stroke** - The distance the piston moves from top dead center (TDC) to bottom dead center (BDC). The stroke is controlled by

the rod journal throw of the crankshaft.

Sway Bar - A suspension component, intended to prevent side-to-side body movement in relation to the axles and wheels. **Swept Volume -** The volume displaced by a piston's travel.

TDC - Top Dead Center

Telemetry - The recording of time coded data from a racecar.

Throttle Body Fuel Injection - The fuel injection(s) are located at the engine's throttle body thereby feeding fuel to more than one cylinder.

Tight - When in a turn the vehicles front tires lose traction before the rear tires.

Tire Growth - The amount that a tire will increase in size / diameter with speed.

Tire Pressure - The measure of air (gas) pressure within a tire. It is adjusted to change handling, as the flexible sidewall serve as an additional spring rate. Increasing tire pressure serves to stiffen the overall rate, while lowering the pressure will soften the overall rate.

Tire Radius - The distance from the axle center to the road surface of a loaded tire.

Tire Temperature - Tires are designed to provide optimal grip within a certain tire temperature range.

Torque Curve - A graph that shows the engine torque against RPM.

Torque Multiplication - Increasing engine torque by using a torque converter.

Torsion Bar - Is a long straight rod secured at one end to the chassis of the vehicle and at the other end to a lever arm, which is free to twist.

Total (Chamber) Volume – This is the volume measured with the piston ATDC with the head installed with a head gasket and the valves closed thru the spark plug hole.

Track Width - Distance between the centerline of front or rear tires measured at the ground.

Transmission – Contains gears used to deliver power from the engine to the rear wheels.

TSB - Technical Service Bulletin

Turbocharger - An exhaust driven centrifugal-flow compressor

Two Stroke / Cycle - An engine which accomplishes the intake, compression, power and exhaust phases in two strokes of the piston (one down and one up).

Underdrive Pulleys - Replaces the stock accessory drive pulley with a lighter version that has a smaller diameter, the

accessories now turns slower than normal. This frees up a few horsepower.

Under Steer - When in a turn the vehicles front tires lose traction before the rear tires.

Unsprung Weight - The vehicle weight not supported by the springs / suspension system. i.e. wheels, brakes, tires, and half of the suspension.

V-Twin – A Two-cylinder engine layout in which the cylinders form a "V".

Valve Stem - The portion of valve that slides in valve guide.

Vapor Pressure - Is the amount of water in the air measured in inches of mercury or millibars.

VDC - Volts Direct Current.

Vehicle Roll Stiffness - Sum of the separate suspension roll stiffness.

Velocity - is the rate of change of distance with respect to time. In many applications it is expressed in miles per hour (MPH), feet per second (FPS), etc.

Volumetric Efficiency - A comparison between the actual volume of fuel mixture drawn in on the intake stroke and what would be drawn in if the cylinder were to be completely filled.

Waste Gate - A valve used to limit the boost developed in a turbocharger system. It is user adjustable and it lets off excess pressure when it opens, which controls max HP.

Water Temperature - The temperature of the coolant circulating through the radiator.

Watts Link - A device used to control side-to-side motion in a ladder bar, torque-tube, or 4-link rear suspension.

Wear Limit - The minimum acceptable size of a component after use.

Weight Transfer - The transfer of load from one end or side of the vehicle to the other when accelerating, braking, or cornering. Wet Clutch - A multi-plate clutch that runs in an oil bath and is part of the primary drive.

Wheel Base - The distance from the center of the front wheels to the center of the rear wheels.

Wheel Rate - The combined effect of spring rate, motion ratio, and other suspension components measured at the wheel. Window Area – Is the area defined by the valve diameter * PI * valve lift. Wire Gauge - A precisely sized wire that is used for measuring clearances.

WOT - Wide Open Throttle.

Wrist Pin Offset – Is when the wrist pin centerline is offset from the connecting rod centerline. Offsetting the piston pin will alter rod angularity. Offsetting the pin so that **Rod Angularity** is decreased will cause the piston movement to behave exactly as it does with a longer rod.

X-Pipe - An X-shaped exhaust pipe that converges two pipes into one and then back into two.

Y-Pipe - A Y-shaped exhaust pipe, where two pipes are merged into one.

ZF - An acronym for "Zahnradfabrik Friedrichshafen," who manufactures transmissions and transaxle.

UNITS Used

Inches / mm

Accessory Pulley Actual Stroke Air Filter Diameter Altitude Altitude New Ballast X Position from Rear End Ballast Y Position from Right **Block Deck Height** Bore **Bore Increase** Cam Lift (Intake) **Collector Diameter** Collector Length **Deck Clearance Depth First Ring** Diameter 1 Diameter 3 Distance to Port from top of Cylinder Boost Distance to Port from top of Cylinder Exhaust Distance to Port from top of Cylinder Transfer Effective Arm Length Exhaust Cam Lift **Exhaust Valve Lift** Filter Diameter Filter Height Head Gasket Head Gasket Bore Height Front Wheel Hub Height Rear Wheel off Ground Horizontal CG Intake Runner Length Inter Diameter of Coils Jet Size Journal Diameter Lateral CG Length 3 Length 7 Main Leaf Length Main Leaf Thickness Main Leaf Width Mean Diameter of Coils Metering Rod Size New Accessory Pulley New Crank Pulley New Jet Size New Metering Rod Size New Sway Bar Outer Diameter New Tire Diameter

Standard / Metric

Outer Diameter of Coils Piston Compression Height Piston Depth Piston Travel Port Diameter Rod Length **Roll Out Distance** Spring Wire Diameter Squish Clearance Stroke Sway Bar Arm Length Sway Bar Center Length Sway Bar Interior Diameter Sway Bar Outer Diameter **Tire Diameter Tire Rolling Radius Top Land Diameter Torsion Arm Length Torsion Bar Diameter Torsion Bar Length** Track Width **Tube Diameter Tube Length Turn Radius** Valve Lift (Intake) Vehicle Height Vehicle Width Vertical CG Wheel Base Wheel Diameter Wire Diameter Wrist Pin Offset

Atmospheric Pressure Inches of Mercury / MilliBars

Barometric Pressure New Barometric Pressure Saturated Vapor Pressure Vapor Pressure

CC's

CC's Poured Combustion Chamber Volume Cylinder Volume Dome Volume Effective Cylinder Volume Head Gasket CC's Ring CC's Squish Volume Total Volume Trapped Volume

Degrees Fahrenheit / Celsius

Dew Point Inter Cooler Inlet Temperature Inter Cooler Outlet Temperature New Temperature Running Inlet Temperature Temperature Water Temperature

Grams

Piston Weight Rod Weight

Sample Parameter File

; A ';' in the first position of a line means that line is a comment

; The following parameters maybe in any order ; If for some reason a parameter is in the list more than once then the : last one will be used Bore = 4.0Stroke = 3.25Rod Length = 5.7Cubic Inches = 326.7256RPM = 6500Bore Increase = 0.060Compression Ratio = 13.59405 New Compression Ratio = 0.0Number of Cylinders = 8Rod Stroke Ratio = 1.75385Bore Stroke Ratio = 1.23077Stroke Bore Ratio = 0.8125Average Piston Speed = 3520.833Block Deck Height = 9.245Piston Compression Height = 1.904Cubicin Option = 2Piston Weight = 600.25Rod Weight = 700.5Small End Rod Weight = 233.5Horse Power = 555.0Horse Power Increase = 0.0Crank Degrees = 74.123Piston Travel = 1.399Wrist Pin Offset = 0.0Torque = 444.0BMEP = 0.0Journal Diameter = 2.5Show 3 Decimals = Yes : Data for CR Deck Clearance = .016Head Gasket = .021Head Gasket Bore = 4.01Head Gasket CC = 4.347Comb Chamber Vol = 65.0Dome Vol = 19.5Total Vol = 75.3Depth First Ring = 0.250Top Land Diameter = 3.965 Ring CC = 0.897Piston Depth = 1.0CCs Poured = 197.1 Dish Depth = 0.060Dish Bore = 3.880

Dish CC = 11.63: Data for ET/MPH/HP MPH = 192.453MPH8 = 156.466MPH60 = 73.4916ET = 7.105ET8 = 4.554ET60 = 1.1133Hook Factor = 1320.0Car Weight = 2350.0; Data for Blowers Max Compression Ratio = 9.5Effective Compression Ratio = 0.0Blower Pressure = 0.0Blower Efficiency = .75Blower Gear = 35Blower Ratio = 1.0Blower RPM = 6500Crank Gear = 35IC In Temp = 175.5IC Out Temp = 82.5IC Pressure Loss = 1.5Blower Density Ratio = 1.5Pressure Ratio = 0.0Number of Turbos = 1Blower Option = 0Rotary 2-Stroke = No Blower Graph = No Use VE RPM Table = No VE RPM = 0.75VE RPM = 0.75

VE RPM = 0.75VE RPM = 0.75Graph X Max = 0.0Graph Y Max = 0.0Max RPM = 14000: Data for Camshafts Intake Open = 42.5Intake Close = 95.5Intake Duration = 318.0Intake CL = 116.5Exhaust Open = 95.5Exhaust Close = 40.5Exhaust Duration = 320.0Exhaust CL = 117.5Lobe Sep Angle = 117.5Advance Retard = 0.0Cam LIft = 0.4Valve LIft = 0.6Rocker Arm Ratio = 1.5Exhaust Cam LIft = 0.4Exhaust Valve LIft = 0.6Exhaust Rocker Arm Ratio = 1.5: Data for Air Flow / Fuel / Exhaust Old Depression = 5.0New Depression = 28.0Old AirFlow = 105.0BSFC = .5Number Injectors = 8Duty Cycle = .85Pulse Width = 15.6923Lbs Hour = 18.0

New Lbs Hour = 20.23994Old Fuel Pressure = 43.5New Fuel Pressure = 55.0Injector Dead Time = 0.0Fuel Pump Flow = 19.5Intake Flow = 300.0Exhaust Flow = 210.0Intake Exhaust Ratio = .7RPM Max Horse Power = 6500Air Fuel Ratio = 12.5Volumetric Efficiency = 0.85Fuel Flow = 225.3Carb Size = 650Peak Torque RPM = 5900 Port Diameter = 2.25Tube Length = 28.0Tube Diameter = 1.75Affected RPM = 7500Collector Length = 18.0Collector Diameter = 4.00Air Filter Diameter = 14.0AirFuel Option2 = 0Intake Valve Size = 2.02Intake Valve Stem Diameter = 0.3415Intake Bowl CSA Percent = 0.91AirFuel Option1 = 0IntakeFlow = 0.1 85.0IntakeFlow = 0.2166.0IntakeFlow = 0.3 229.0IntakeFlow = 0.4294.0IntakeFlow = 0.5350.0IntakeFlow = 0.55 400.0IntakeFlow = 0.6425.0IntakeFlow = 0.65 430.0IntakeFlow = 0.7435.0IntakeFlow = 0.75 437.0IntakeFlow = 0.8439.0IntakeFlow = 0.85 440.0IntakeFlow = 0.9438.0IntakeFlow = 1.0 0.0IntakeFlow = 1.10.0IntakeFlow $= 1.2 \ 0.0$ Exhaust Valve Size = 1.60Exhaust Valve Stem Diameter = 0.3415Exhaust Bowl CSA Percent = 0.91ExhaustFlow = 0.166.0ExhaustFlow = 0.2 114.0ExhaustFlow = 0.3 168.0ExhaustFlow = 0.4 215.0ExhaustFlow = 0.5 238.0ExhaustFlow = 0.5525.0ExhaustFlow = 0.6266.0 $ExhaustFlow = 0.65\ 280.0$ ExhaustFlow = 0.7285.0ExhaustFlow = 0.75290.0ExhaustFlow = 0.8292.0

214 - CARFOR Performance Software by World Wide Enterprises

ExhaustFlow = 0.85291.0ExhaustFlow $= 0.9 \ 0.0$ ExhaustFlow = 1.00.0ExhaustFlow = 1.10.0ExhaustFlow $= 1.2 \ 0.0$ IntakeLift = 0.008 288.0 IntakeLift = $0.05\ 235.0$ IntakeLift = $0.1\ 210.0$ IntakeLift = $0.15 \ 190.0$ IntakeLift = $0.2 \ 175.0$ IntakeLift = 0.25 155.0 IntakeLift = $0.3 \ 135.0$ IntakeLift = 0.35 115.0 IntakeLift = 0.495.0IntakeLift = 0.45 85.0IntakeLift = 0.570.0IntakeLift = 0.658.0IntakeLift = 0.7 44.0IntakeLift = $0.8 \ 30.0$ IntakeLift = 0.922.0IntakeLift = 1.05.0 $ExhaustLift = 0.008 \ 300.0$ $ExhaustLift = 0.05\ 250.0$ ExhaustLift = 0.1235.0 $ExhaustLift = 0.15\ 205.0$ ExhaustLift = 0.2 190.0 $ExhaustLift = 0.25 \ 175.0$ $ExhaustLift = 0.3\ 155.0$ ExhaustLift = 0.35 135.0 ExhaustLift = 0.4 115.0ExhaustLift = 0.4595.0ExhaustLift = 0.575.0ExhaustLift = 0.663.0ExhaustLift = 0.747.0ExhaustLift = 0.8 33.0ExhaustLift = 0.922.0ExhaustLift = 1.05.0Lambda Option = 0Degree TDC = 222User DC = 0.5Number of Intake Valves = 1Number of Exhaust Valves = 1Test Depression = 28Graph Max Lift = 1.20User Velocity fps = 280Calculate Every x.xx lift = 0.025Scale Size = 1Scale Size 2 = 1Intake Valve Angle = 23.0Exhaust Valve Angle = 23.0Seat Angle = 45Seat Width = .08Exh Seat Angle = 45Exh Seat Width = .08Intake MCSA = 0.0Exhaust MCSA = 0.0

A-F Advance Retard = 0.0Exh Advance Retard = 0.0A-F Lobe Sep Angle = 0.0Valve to Piston Cl = 0.0Lift Table = 0.0Lift Table = 0.006Lift Table = 0.01Lift Table = 0.02Lift Table = 0.04Lift Table = 0.05Lift Table = 0.1Lift Table = 0.15Lift Table = 0.2Lift Table = 0.25Lift Table = 0.3Lift Table = 0.35Lift Table = 0.4Lift Table = 0.45Lift Table = 0.5Lift Table = 0.55Lift Table = 0.6Lift Table = 0.65Lift Table = 0.7Lift Table = 0.75Lift Table = 0.8Lift Table = 0.85Lift Table = 0.9Lift Table = 0.95Lift Table = 1.0Lift Table = 1.05Lift Table = 1.1Lift Table = 1.15H Factor = 77AirFuel Option5 = 0Show Dots = NoShow Large Grouping = No Circle = NoLine = NoDOHC = NoIntake Lash = 0.024Intake Open BTDC = 120.0Exhaust Lash = 0.03Exhaust Open BBDC = 340.0Mach Valve Diameter = 2.02Mach Valve Lift = 0.888Mach Number = .4321; Data for Weather Barometric Pressure = 29.92Barometric Pressure New = 29.62Temperature = 59.0Temperature New = 60Humidity = 5.0Humidity New = 25.0Altitude = 33.33Altitude New = 80Crank Pulley = 5.25

Accessory Pulley = 7.25New Crank Pulley = 6.25New Accessory Pulley = 7.25Jet Size = 0.082Metering Rod Size = 0.033; Data for Compression Gauge Dynamic Compression Ratio = 7.432Compression Gauge = 165.5Crank Angle CG = 10.0Base Exponent = 1.0: Data for Gears Front Sprocket = 12Rear Sprocket = 24Rear Gear Ratio = 4.1Ring Gear = 41Pinion Gear = 10New Rear Gear Ratio = 4.56Tire Diameter = 24.0New Tire Diameter = 29.75Tire Width = 195.0Wheel Diameter = 16.0Aspect Ratio = 75.0; Trans Gear Ratios T Gear1 = 3.25T Gear2 = 2.25T Gear3 = 1.25T Gear4 = 1.0T Gear5 = 0.87T Gear6 = 0.0T Gear7 = 0.0T Gear8 = 0.0T Gear9 = 0.0T Gear 10 = 0.0T Gear 11 = 0.0T Gear 12 = 0.0T Gear 13 = 0.0T Gear 14 = 0.0T Gear 15 = 0.0T Gear 16 = 0.0T Gear 17 = 0.0T Gear 18 = 0.0Track Size = 1.366Track Time = 29.56Turn Radius = 100.0Skid Pad Gs = 1.54321Long Acel Gs = 1.2; Data for Springs / Torsion Bars / Sway Bars Spring Wire Diameter = 0.5Number Active Coils = 10.0Number Coils = 12.0Diameter Coils = 4.0Spring Rate = 146.48Modulus of Rigidity = 12000000Modulus of Torsion = 1178000Torsion Bar Diameter = 0.88Torsion Bar Int Diameter = 0.0

Torsion Bar Length = 35.8Torsion Arm Length = 13.5Torsion Bar Rate = 108.27Sway Bar Out Diameter = 0.875Sway Bar Int Diameter = 0.0Sway Bar Center Length = 40.0Sway Bar Arm Length = 0.0Effective Arm Length = 9.0New Sway Bar Out Diameter = 0.975Main Leaf Length = 48.0Main Leaf Width = 2.0Main Leaf Thickness = 0.25Number Leafs = 5: Data for Chassis Weight Left Front = 850.0Weight Left Rear = 850.0 Weight Right Front = 850.0Weight Right Rear = 850.0Percent Weight Left Front = 25.0Percent Weight Left Rear = 25.0Percent Weight Right Front = 25.0Percent Weight Right Rear = 25.0Cross Weight = 1700.0Percent Cross Weight = 50.0Weight Front = 1700.0Weight Rear = 1700.0Weight Left = 1700.0Weight Right = 1700.0Percent Weight Front = 50.0Percent Weight Rear = 50.0Percent Weight Left = 50.0Percent Weight Right = 50.0Wheel Base = 112.0Raised Weight Front = 1800.0Height Front Wheel Hub = 13.0Height Rear Wheel = 14.0Horizontal CG = 50.0Vertical CG = 63.5Track Width = 62.5Weight Transfer = 123.5Ballast = 110Ballast X = 56.0Ballast Y = 31.25Unsprung Weight Left Front = 85.0Unsprung Weight Left Rear = 85.0 Unsprung Weight Right Front = 85.0Unsprung Weight Right Rear = 85.0Left Front Spring Rate = 800Right Front Spring Rate = 800Left Rear Spring Rate = 600Right Rear Spring Rate = 600Front Sway Bar Rate = 175 Rear Sway Bar Rate = 125 Left Front Spring Move = 0.8Right Front Spring Move = 0.8Left Rear Spring Move = 0.6

216 - CARFOR Performance Software by World Wide Enterprises

```
Right Rear Spring Move = 0.6
Left Front Sway Bar Move = 0.75
Right Front Sway Bar Move = 0.75
Left Rear Sway Bar Move = 0.55
Right Rear Sway Bar Move = 0.55
Front Track Width = 175
Rear Track Width = 175
Front Roll Center Height = 6.0
Rear Roll Center Height = 12.0
: --
Type Curve = 2
Start Degrees = 0
End Degrees = 360.0
Every X Degrees = 5.0
Start Seconds = 23.0
End Seconds = 30.0
Every X Seconds = 0.025
: Acceleration / Top Speed
Tire Rolling Resistance = 0.015
Coefficient of Drag = 0.34
Frontal Area = 19.4
Veh Width = 74.5
Track BP = 29.92126
Shift Torque = 2350.0
Veh Height = 55.75
Percent Drive Train Power Loss = 12.5
Percent Rear End Power Loss = 6.5
Tire Rolling Radius = 12.0
Dyno Correction = 1.00
Launch RPM = 5200
Shift RPM 1-2 = 10000
Shift RPM 2-3 = 10000
Shift RPM 3-4 = 10000
Shift RPM 4-5 = 10000
Shift RPM 5-6 = 10000
Shift RPM 6-7 = 10000
Shift RPM 7-8 = 10000
Shift RPM 8-9 = 10000
Shift RPM 9-10 = 10000
Shift RPM 10-11 = 10000
Shift RPM 11-12 = 10000
Shift RPM 12-13 = 10000
Shift RPM 13-14 = 10000
Shift RPM 14-15 = 10000
Shift RPM 15-16 = 10000
Shift RPM 16-17 = 10000
Shift RPM 17-18 = 10000
Shift Time 1-2 = 0.05
Shift Time 2-3 = 0.05
Shift Time 3-4 = 0.05
Shift Time 4-5 = 0.05
Shift Time 5-6 = 0.05
Shift Time 6-7 = 0.05
Shift Time 7-8 = 0.05
Shift Time 8-9 = 0.05
Shift Time 9-10 = 0.05
```

Shift Time 10-11 = 0.05Shift Time 11-12 = 0.05Shift Time 12-13 = 0.05Shift Time 13-14 = 0.05Shift Time 14-15 = 0.05Shift Time 15-16 = 0.05Shift Time 16-17 = 0.05Shift Time 17-18 = 0.05Tire Growth 1 = 0.0Tire Growth 2 = 0.0Tire Growth 3 = 0.0Tire Growth 4 = 0.0Tire Growth 5 = 0.0Tire Growth 6 = 0.0Tire Growth 7 = 0.0Tire Growth 8 = 0.0Tire Growth 9 = 0.0Tire Growth 10 = 0.0Tire Growth 11 = 0.0Tire Growth 12 = 0.0Tire Growth 13 = 0.0Tire Growth 14 = 0.0Tire Growth 15 = 0.0Tire Growth 16 = 0.0Tire Growth 17 = 0.0Tire Growth 18 = 0.0Power Loss 1 = 0.0Power Loss 2 = 0.0Power Loss 3 = 0.0Power Loss 4 = 0.0Power Loss 5 = 0.0Power Loss 6 = 0.0Power Loss 7 = 0.0Power Loss 8 = 0.0Power Loss 9 = 0.0Power Loss 10 = 0.0Power Loss 11 = 0.0Power Loss 12 = 0.0Power Loss 13 = 0.0Power Loss 14 = 0.0Power Loss 15 = 0.0Power Loss 16 = 0.0Power Loss 17 = 0.0Power Loss 18 = 0.0Trans Gear = 1RollOut = 11.75Smooth HP Graph = N Coefficient of Mu = 5.0Converter Stall Speed = 2350Torque Multiplier = 1.6Wind Speed = 0Wind Direction = 0Automatic Trans = No Converter Slippage = 3.25Dyno BP = 29.92Dyno VP = 0.45

Dyno Temp = 95.5Primary Drive = 2.0Use Primary Drive = No Hood Scoop = NoRPM Acce Rate = No ; Acceleration / Top Speed - CVT Constant Velocity Trans CVT RPM = 9500CVT Power Loss = 20.0; Acceleration / Top Speed - Nitrous Data Nitrous MS = 1 110 1 100 1 Nitrous $MS = 2\ 120\ 2200\ 75\ 2220$ Nitrous MS = 3 130 3300 50 3330 Nitrous MS = 4 140 4400 25 4440 Nitrous MS = 5 150 5500 0 5550 Nitrous MS = 9 160 6600 0 6660 Nitrous MS = 9 170 7700 0 11050 Nitrous MS = 46.54 150 0.65 50 1.1 Nitrous MS = 9999.0 150 1.5 75 2.3 Nitrous MS = 9999.0 150 2.8 100 2.8 Nitrous MS = 9999.0 150 9999.0 100 9999.0 Nitrous = NoNitrous RWHP = No ; Acceleration / Top Speed - Throttle Stop Throttle Stop = NoThrottle Stop RPM = 4000Throttle Stop Time = 0.3: 2 Stroke Exhaust Exhaust Port Width = 19.5Exhaust Port Height = 9.25Exhaust Gas Temp = 381.856Speed of Sound = 518.15Power KW = 3.71Konstant K0 = 0.7Konstant K1 = 1.125Konstant K2 = 2.25Horn Coeff = 2Angel 1 = 8.5Angel 2 = 17.0Length 3 = 8.0Length 7 = 12.0Diameter 1 = 12.5Diameter 3 = 0.6: 2 stroke Port Timing Form 2 S Exhaust Distance = 1.3992 S Boost Distance = 1.4992 S Transfer Distance = 1.5992 S Exhaust Degrees = 74.125 2 S Boost Degrees = 77.5162 S Transfer Degrees = 80.9172 S Exhaust Port Area = 4.3092 S Boost Port Area = 3.9842 S Transfer Port Area = 2.217

Squish Ratio = 0.53Squish Clearance = 0.047244; Nitrous Fuel Pressure = 6.0Nitrous Pressure = 950 Nitrous Jet Size = 0.024Number Nitrous Jets = 8Nitrous Option = 0Specific Gravity Gas = 0.740Specific Gravity Methanol = 0.790Specific Gravity Ethanol = 0.790Specific Gravity E85 = 0.780Fuel Jet Size = 0.0Number Fuel Jets = 8Fuel Jet Size S2 = 0.048Number Fuel Jets S2 = 2: Cam Generation Cam Gen L = 0.0Cam Gen L = 0.008Cam Gen L = 0.01Cam Gen L = 0.02Cam Gen L = 0.05Cam Gen L = 0.1Cam Gen L = 0.15Cam Gen L = 0.2Cam Gen L = 0.25Cam Gen L = 0.3Cam Gen L = 0.35Cam Gen L = 0.4Cam Gen L = 0.45Cam Gen L = 0.5Cam Gen L = 0.55Cam Gen L = 0.6Cam Gen L = 0.65Cam Gen L = 0.7Cam Gen L = 0.75Cam Gen L = 0.43Cam Gen D = 350.0Cam Gen D = 0.0Cam Gen D = 0.0Cam Gen D = 304.0Cam Gen D = 270.0Cam Gen D = 236.0Cam Gen D = 0.0Cam Gen D = 187.0Cam Gen D = 0.0Cam Gen D = 137.0Cam Gen D = 0.0Cam Gen D = 0.0

218 - CARFOR Performance Software by World Wide Enterprises

Cam Gen O = 0.0Cam Gen O = 0.0Cam Gen O = 0.0Cam Gen O = 23.0Cam Gen O = 40.0Cam Gen O = 57.0Cam Gen O = 0.0Cam Gen O = 81.5Cam Gen O = 0.0Cam Gen O = 106.5Cam Gen O = 0.0Cam Gen O = 175.0Cam Gen C = 350.0Cam Gen C = 0.0Cam Gen C = 0.0Cam Gen C = 327.0Cam Gen C = 310.0Cam Gen C = 293.0Cam Gen C = 0.0Cam Gen C = 268.5Cam Gen C = 0.0Cam Gen C = 243.5Cam Gen C = 0.0Cam Gen C = 0.0M E Ratio = .005Asymmetrical Zero Durat = 370Tappet Bucket Diameter = .842 Asymmetrical = No Output S96 = NoLash Ramp Option = 0Generation Method Option = 0: User Selected Graph Options Graph Heads = Yes Graph Logo = No Move Grid Lines = No Graph Line Color = NoGrid Switch = 1Large Lines = No Caption Top = 2Caption Side = 2Graph Font Size = 0

Semi Grid Cross Lines = No Semi Grid Box Lines = No Grid Color = 0Solid Switch = 1Graph Line Width = 2Graph Font Color = 0Graph BackGround Color = 16777215 ; The following 2 parameters must be in THIS Order Custom Graph Width = 6Custom Graph Height = 6Custom Grid Line Count x = 10Custom Grid Line Count y = 10Draw Line Color = 99999 Draw Line Width = 5Draw Switch = No ; User Selected GUI Options -- Keep This Order Ouit BackGround Color = -2147483633 BackGround Color = -2147483633 Option Check Box Style = 1Large Screen = No Full Screen = No Entry Box Font Name = Tahoma Entry Box Font Size = 9Entry Box Font Bold = 0Entry Box Font Italic = 0Entry Box Alignment = 2Entry Box Style = 1Label Box Font Name = Tahoma Label Box Font Size = 9Label Box Font Bold = 0Label Box Font Italic = 0Label Box Color = -2147483640Command Button Font Name = Tahoma Command Button Font Size = 9Command Button Font Bold = 0Command Button Font Italic = 0Help Box Font Name = MS Sans Serif Help Box Font Size = 10Help Box Font Bold = -1Help Box Font Italic = 0Help Box Font Color = -2147483630Help BackGround Color = 65535 Metric Mode = OFF ; Data for Acceleration / Top speed calculator The following parameters must be in Ascending Order by RPM RPM Torque Fuel BSFC A/F SCFM BSAC lb/hr Ratio Acceleration $= 5000\ 700.0$ Acceleration = 5500720.0Acceleration = 6000750.0Acceleration = 6500780.0Acceleration = 7000 810.0Acceleration = 7500 840.0Acceleration = 8000 820.0Acceleration = 8500 815.0

Acceleration = 9000780.0Acceleration = 9500737.0Acceleration = 10000 685.0 ; Data for Road Horse Power ; The following parameters must be in Ascending Order by MPH MPH Time Road HP = 21.51 1.6829 Road HP = 23.47 1.8356 Road HP = 25.67 2.0061 Road HP = 28.11 2.192 Road HP = 30.0 2.3341 Road HP = 32.27 2.5083 Road HP = 34.22 2.6635 Road HP = 36.67 2.8677 Road HP = 39.11 3.0899 Road HP = 40.09 3.1848 Road HP = 42.05 3.3879 ; Data for ROad Horse Power ; The following parameters must be in Ascending Order by **RPM** RPM Time ROad HP = 2200.0 1.6829 ROad HP = 2400.0 1.8356 ROad HP = 2625.0 2.0061 ROad HP = 2875.0 2.192 ROad HP = 3068.3 2.3341 ROad HP = 3300.0 2.5083 ROad HP = 3500.0 2.6635 ROad HP = 3750.0 2.8677 ROad HP = 4000.0 3.0899 ROad HP = 4100.0 3.1848

ROad HP = 4300.0 3.3879

CMM (extension) File format	0.046
	0.028
This is an example of data that was measured by me in the '70s using a dial indicator and degree wheel.	0.018
	0.011
Every x degrees = number I_Lash = Intake Valve Lash - Optional	0.008
$E_Lash = Exhasut Valve Lash - Optional$	0.005
intake – start of intake figures	0.002
lift lines - as many are needed	0.000
exhaust – start of exhaust figures	exhaust 10.01 \leftarrow Version 3.25.0 Added can have Every
lift lines - as many are needed	value
A ";" semi-colon at the start of the line means that line is a	; Crane Roller
comment	0.001
Version 3.15.0 - can also read in "C1" files from Cam	0.004 0.007
Doctor or exported from Cam Pro Plus	0.01
Version 3.15.5 - For cam lift – piston travel mapping you	0.013
really need lift data for every 1 degrees	0.015
	0.029
Commis Oom File	0.029
Sample Cam File	0.06
every x degrees = 10 - I_Lash = 0.028 - E_Lash = 0.030	0.078
intake Crane Roller R-278/427-2S-8-NC Lash .028 .030	0.104
0.002	0.138
0.005	0.174
0.008	0.21
0.013	0.242
0.021	0.27
0.033	0.296
0.052	0.322
0.077	0.344
0.108	0.359
0.143	0.371
0.181	0.378
0.219	0.381
0.258	0.379
0.295	0.374
0.328	0.367
0.358	0.349
0.383	0.331
0.401	0.307
0.415 0.423	0.279
0.425	0.252
0.422	0.22
0.413	0.186
0.397	0.153
0.377	0.12
0.349	0.089
0.318	0.063
0.285	0.042
0.248	0.027
0.208	0.017
0.170	0.012
0.131	0.009
0.096	0.006
0.068	0.003
	0.0
CAREOR	Derformance Software by World Wide Enterprises 221

What's New – In This Version — 4.9.1 —

AIRFUEL - Port Time Area / Graphing / Graphing Options - Added Button to Read Flow Data so you don't have to switch to the "Analyze Flow Data" screen.

Main - If the Red "X" in upper right corner is clicked. The User shouldn't see a message that lets them be able to "Cancel" exiting the program.

AIRFUEL - Fixed bug on Port Average CSA Calculator so User could Enter Port Average CSA value.

CARGRAPH - Add a Print Graph Button. Unlike the Print Forms – Graph Button, this will only Print the Graph and will handle Printing a larger Graph.

Cam_Info - Increase size of Text / Report Area to fill form.

Cam_Gen – Added 2 new columns for Open and Close information from Cam Analyzer Reports. Will calculate Open and Close points to do Asymmetrical Cam lobe generation.

- Changed "Sort by Lift" to do ALL columns

CR - Added "Chart CR against needed Total Volume from all Inputs needed to Calculate CR

- Added Chart CR against needed Combustion Chamber from all Inputs needed to Calculate CR.

- Added Chart CR against needed Dome / Dish Volume from all Inputs needed to Calculate CR.

- Added Chart CR against needed Head Gasket Thickness from all Inputs needed to Calculate CR.

- Added Calculate Head Gasket Thickness Needed from Head Gasket Bore Size, and Head Gasket Volume - cc Wanted

— 4.8.0 —

ACCELER - In ROad HP Calculation change RPM Rate from an Integer to a Decimal

- On Text Report will calculate BFSA if information to do so is there.

- Added Graphing BSAC

AIRFUEL - Modified Port Average CSA Calculator to also let the User Enter

Port Average CSA and Calculate either Port cc's or Port Length.

- Added option so the Cam Data Graph can be from 360 to 360

Cam_Gen - Added 5 more entries slots for Cam Information

Cam_Info - Added "Spike Limiter" so Graphs can better Show Important Data

CR - Added a Chart CR against Needed Total Volume - Added Graph Plus

CUBICIN - Added Graph % Volume Change Against Total Volume. Using Bore, Stroke, Wrist Pin Offset, Rod Length, and Compression Ratio.

- Added Graph Pressure Differential from % Volume Change Against Total Volume. Using Bore, Stroke, Wrist Pin Offset, Rod Length, and Compression Ratio.

Equiv - Changed Many of the Charts so that they are not on the very left edge of the screen or Page if Printed. - Added Some More Entries in the AN Dash Chart

Spline - Increased the Number of Points that it can Handle

Added Logic so that if any field is edited the program will ask if you want to save your data before closing / exiting the program or before Reading / Loading a new file.

— 4.7.3 —

Cam_Gen - Added Sort by Duration. This is only of use if using the Generate Curves Functions.

COMPGAUG – Modified - If Use PSI / Hg Limit is Checked then this Value will be Used for Max CR on the Y-Axis on the IVC/CR CGP Graph

- When doing Calculations in Metric these field were wrong

Cylinder Vol @ Intake Close cc's Cylinder Vol @ Intake Close ci Swept / Cylinder Volume Est. Octane Needed Iron Heads

Main - On Graph / Draw Options Added an Option for 12 and 14 Font Size

For a new Installation. Added Button so that they can email Registration Data to Customer Service

— 4.7.2 —

ACCELER - Added Option so Corrected and UnCorrected Torque can be Graphed in NM

CR – Fixed problem. When Dish Bore radius was not zero the Dish Volume was not correct (It was to small)

ACCELER - Expanded SLR Table

Tools - Added Printing an Timing Tape for a given Balancer Diameter

Fixed Bug where Disk Drive Number and Computer Name Reset used wrong Program Name

ABOUT - Added Button. If you have a default Browser set when you Click the Button it will Download a copy of CARFOR's User Manual

ACCELER - On Graphing Screen - Added a Graph for Dyno Correction Factor

- On Graphing Screen - Text Report - Added Avg, Min, and Max Values for Dyno Correction Factor

AIRFUEL - Added new Output on Calculators. To show Port CSA as a Diameter

- Added Display of Flow Area CFM to the Analyze Flow Data - Text Report

- Added Calculation / Display to the Analyze Flow Data - Text Report For Intake and Exhaust Seat Minor Diameters

- Added Export Flow Data to a DFW Format File to the Analyze Flow Data screen

- Added new Output on EFI Sizing Injector cc's/min

- On Text Report Dyno Added Display BSAC

- On Text Report Dyno Added a Second Display with a Torque Curve

CR - Added 4 New Output Fields

- Deck Volume @ TDC

- Inch of Deck per cc

- cc per 0.001" of Head Gasket Thickness

- cc per 0.001" of Deck Height

- Fixed Problem where Deck Clearance was not converted to Metric Value.

COMPGAUG - Added New Graph - Octane Requirement vs Intake Valve Close ABDC

TRANS - Added Torque Rating / Capacity for some Trans

UNITCONV - Under Acceleration added input for in/s^2

Under Force added input for in-lb

On Print Reports I have removed the spelled out day of the week and Added the time.

— 4.6.0 —

ACCELER - Fixed Problem where if you had Fuel/lbs/hr and neither A/F ratio or BSFC then Fuel/lbs/hr did not show on the Text Report and could not be Graphed. Also will now show an Estimated BSFC, plus Uncorrected HP, Torque and BMEP

- Fixed Problem where if you had BSFC and did not have Fuel/lbs/hr then BSFC did not show on the Text Report and could not be Graphed. Also will now show an Estimated Fuel lbs/hr, plus Uncorrected HP, Torque and BMEP

AIRFUEL - Added new Text Report Dyno HP, Torque, Fuel lbr/hr and SCFM

- On "Just Cam Spec" / "Port Time Area 2" Report the Cam Information now show CL at each point shown. This really is only of any importance if the cam is asymmetrical.

CARGRAPH - Fixed a problem that when saving a Graph that is larger than will fit on the screen to a JPG file it contained extra unneeded area.

COMPGAUG - Added New Graph - Display Needed Pressure for a User Entered Constant Turning Force

- Added / Changed - What User Input Data that is Displayed on a number of the Graphs

ET_MPH - Added - you can enter a BSFC Value. When Generating Digital HP if Acceleration Chart File is Checked and BSFC is not Zero then Fuel lbs/hr will be Calculated.

NITROUS - Added function where you can enter Nitrous HP and Calculate Nitrous and Fuel Jet Sizes.

MAIN - Fixed problems where some information was not written or not written correctly in the Parameter File

- Acceleration / Trans Gears 11 to 18 not saved correctly.

- Cam_Gen Data Generation Method may not be saved correctly

- Nitrous Style / Type may not be saved correctly

- Fixed Problem where if an Acceleration = record in the parameter file had just RPM Torque Fuel/lbs/hr it was ignored / skipped.

— 4.5.0 —

CARFOR Performance Software by World Wide Enterprises - 223

ACCELER - Graphing Screen - Added Check Box for a Compact Text Report. This will not show on the Text Report UNCorrected BMEP and the SAE J1349 Correction Factor nor SAE Corrected HP or torque. This reduction in data means that if you print this Report it will print in point size 10 where as the larger report has to be printed in point size of 9 to fit.

- If the Compact Text Report Box is checked. It will cause the Acceleration and Top Speed Report to be printed in point size of 10. This will fit as long as neither or only one of these two is checked 'Show RPS Rate' and 'Hood Scoop'.

- Added Graph Corrected HP - Unlike the other Graph this only Graphs HP

- Added Graph Corrected Torque - Unlike the other Graph this only Graphs Torque

- On Road HP Graph added a new Caption - Showing Input Data - This Data was already Shown on the Report Screen

- On ROad HP Graph added a new Caption - Showing Input Data - This Data was already Shown on the Report Screen

- For (Do_first) up to Launch RPM Added Calculate Hood Scoop Pressure if Selected

BLOWERS - Adjusted a few colors so they show up a little better on a white background Graph

- Adjusted the wording on a couple of Buttons

CARGRAPH - For Read PRM file Added Caption11 to Caption 20. These let the User add Text on to the Graph. - Added Save a Graph to JPG format. This will save a Graph that is larger than will fit on the screen to a file.

Cam_Info - Fixed problem where Graph, Graph Plus, and Text Report Valve were not picking up a change in RPM.

COMPGAUG - Modified Caption on Turning Force Graph to Say Turning Force and not Cylinder Pressure.

- Fixed Cylinder Pressure Graph so it now works for Metric Input.

TRANS - Added a large number of Pro Trans Automatic Gear Ratios

— 4.4.4 —

ACCELER - Added on Graph(s) against RPM of Fuel lbs/hr, BSFC, A/F Ratio, SCFM, % VE, UnCorrected HP, UnCorrected Torque, and Uncorrected BMEP Showing the Parameter File Name and the line Color

- Changed for Graph against RPM of Fuel lbs/hr, BSFC, A/F Ratio, SCFM, % VE, UnCorrected HP, UnCorrected Torque, and Uncorrected BMEP so that the USER can now Enter the Y-axis lower limit. AIRFUEL - Added a "Just Cam Spec" button. This produces the same Cam Information as the Port Time Area 2 does. But without the time area information. So there is no need to jump around to see the Exhaust Cam Numbers.

- Fixed Problem where BSFC did not always have the correct value when saved to the parameter file.

- Made changes so that Mass Air Flow is now saved to the parameter file.

- Made changes on EFI screen so Change in Fuel Pressure will also now calculate New Duty Cycle

- Added a Warning Message if Duty Cycle is Greater Than 95%

- Added a Warning Message if Pulse Width is to Great for RPM

MAIN - Added writing USER Selected location for where to print the Company Information on the Printed Reports to the parameter file

TRANS - Added a large number of after market GM TH200 Automatic gear ratios (Scott McClay)

— 4.4.3 —

This version is just an enhancement to the Print Reports Head Option. You have only been able to print your Company Information Centered on the Report Page. You now have the option to print your Company Information either Flush Left or Flush Right also. If you have loaded your Logo and use either Flush Left or Flush Right the Logo will Print on the Report also. The program will handle adjusting BLOWERS - Adjusted a few colors so they show up a little better on a

white background Graph

- Adjusted the wording on a couple of Buttons the starting position for the report text based on the height of the Logo so that no text will be printed on it. The User will need to adjust their Company Information so that it does no over print on their Logo.

— 4.4.2 —

ACCELER - If doing a Acceleration test and the simulation reached a point of no Acceleration and any of these were checked (Nitrous, RPS Acceleration Rate, Hood Scoop PSI) they will not now be shown.

AIRFUEL - Added a new Radio Buttons to Produce a new version of the Original Text Reports with even smaller (Quarter) increments

224 - CARFOR Performance Software by World Wide Enterprises

- Added a new Radio Buttons to Produce a new version of the Smaller Text Reports with even smaller (Quarter) increments

- Added Check Box which will cause Report to produce Only a Single grouping.

- Fixed Bug. When Printing Reports First line was not Printed.

CUBICIN - Added Radio buttons to select if a Graph that would normally show 0 to 360 on the x-axis will show 0 to 360 or show -180 to 180 or show 0 to 180.

Main - Increased the max number of Graph Grid Lines from 200 to 400

When Printing a Report - Added some logic to try and keep Bold Lines together at the bottom of a page.

— 4.4.1 —

ACCELER - Added a SLR (Starting Line Gear Ratio) Chart.

CUBICIN - While the max number of lines shown on the screen is fixed and has not changed. I have increased the max number of lines that can be calculated to 3600. If the data is saved to a disk file or printed you will see all of that data.

- Add Graph Absolute Value Check Box. When Checked and Graphing Piston Acceleration the low y-axis will be set to zero.

Equiv - Changed so that any of the Charts can now be Printed.

Main - Added Option to Print the USERS Company Information on the top of every Page of a Printed Report

Made it so Printed Reports will have column heads Printed in Bold and also that the column Heads will be Printed at the Top of the each Page if the Report is more than one page.

Made changes to a number of Text Reports, so that they take less time to product. ex on Acceleration Screen the CVT option.

— 4.4.0 —

ACCELER Made a few adjustments to the Road HP / MOI Printouts.

AIRFUEL - Added Estimate BSFC from Comp Ratio. - Rewrote routine to pull Flow Data from Dynomation Files. COMPGAUG - Modified Turning Force Graph so high value for Y-Axis is adjusted better for later peak cylinder pressure.

- Added second method for Calculating / Graphing Turning Force

NITROUS - Made Adjustments for Timing and Spark Plugs for K-Y options.

Made it so that any output that is a text report where you can press a . to save that data to a disk file you can now press a , and the program will print that data to your printer. You can also have your Company Information Printed as a header on the first page of the printout.

Made it so some forms can be Minimized and will show the CARFOR Icon.

AIRFUEL - Added Text Report - Calculate Engine Mass Air / Fuel Flow / HP. Using Engine Size, RPM (Fixed), Volumetric Efficiency (Varying), Air/Fuel Ratio (Varying), BSFC (Varying), Inlet Temperature, Barometric Pressure and Blower Pressure - Also Mass Fuel Flow using Air Fuel Ratio / Lambda Value.

- Added Radio Buttons to Produce 3 new version of the Text Reports

- Changed Text Reports, so that each grouping now gets headings

BLOWERS - Added HP - lbs / min option

Cam_Gen - Changed hold the Calculated Polynomial is written to the parameter file. Should be easier to understand.

COMPGAUG - Modified Turning Force Graph so high value for Y-Axis is adjusted better for later peak cylinder pressure.

CR - Added Calculate Dish Bore from Dish Volume, Dish Depth, and Dish Bore Bottom Radius

- Changed Calculate Dish Volume to now also use Dish Bore Bottom Radius

- Changed Calculate Dish Depth to now also use Dish Bore Bottom Radius

CUBICIN - Added Calculate Stroke Needed from RPM, and Mean / Average Piston Speed

WEATHER - Added Text Report that shows different Jet and Metering Rod Size Combinations that will give the needed Area for weather Change.

CARFOR Performance Software by World Wide Enterprises - 225

- Added Option to calculate needed jet size for change in weather with fixed metering rod size

— 4.2.0 —

ACCELER - Added If Acceleration Run is greater then 500 feet. I will calculate 1/8 mile et Using 2 methods. Constant Velocity and coast down (Aero Dynamic Drag).

AIRFUEL - Added Text Report 2 - Using Peak Piston Flow Demand @ RPM from 1000 to 18000. Calculate Intake Throat fps, Dc, Valve fps, DC, MCSA fps, DC, CFM per sq. In. Throat, Valve, MCSA.

Cam_Gen - Added Using Maximum Velocity Calculate the Minimum Tappet / Bucket Diameter before the cam lobe will run over the edge of the Tappet / Bucket.

- Changed Generate Constant Acceleration Ramps from User supplied Acceleration Rate, and Duration. So that it also does Velocity, Jerk, and Snap

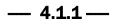
- Changed Generate Constant Acceleration Ramps from User supplied Acceleration Rate, and Max Lift. So that it also does Velocity, Jerk, and Snap

Cam_Info - Added 4.2.0 Check Box. Checking this box will cause the program to use a different way to calculate Acceleration and Jerk. You will only see a difference if 'Every x degrees' is not equal to 1."

Fixed Problem When there was No Exhaust Data and both Smooth and "S L D" were checked and Smooth and was other than SG Program Crashed

CR - Added Graph Vary Combustion Chamber Volume (all else constant) verses CR

Fixed a problem, where the Graph CR verses Total Volume under very unusual condition used the data.


Changed the Y-Axis on the Graph CR verses Total Volume so that the low and high range is an Integer.

Fixed a problem, when the User supplied either Head Gasket cc's or Ring cc's. The program would still check the fields used to calculate those values and might give an error even thou those field were not needed for this calculation.

CUBICIN - Added Calculate / Display - Average Piston Flow Demand.

Tools - Added Convert PRT / Delimited File For Acceleration / Dyno Sheet

- User Selected Fields - RPM, Torque, Fuel, BSFC, and A/F Ratio

ACCELER – Added Check Box for use with Graph G Force Time, so if the run does not go the full ¼ mile the User can see the negative G's on the graph.

AIRFUEL - Port Flow / CSA - Changed max lift aloud from 1.5" to 1.7"

- Text Report- Changed so max is based on engine

- Port Time Area 2 Report - Fixed Vert and Horiz headings.

- In rare cases high lift flow was wrong - Port Time Area Graph Flow - In rare cases high lift flow was wrong

- When calculating Mass Air and Fuel Flow it will now also calculate HP

- USER can now enter WOT vacuum for Carb calculation

Cam_Gen - Add Generate Curve Data 2. Unlike generating Cam data this does not sequence check Lift data and will write both fields to the output file.

- Added New Generation Method - Spline Interpol

GEAR - Modified so more field are converted to and from Metric

WEATHER - Modified so more field are converted to and from Metric

Main - Fixed problem - Where Printer Setup might not show all available Printer Drivers.

AIRFUEL - Added Text Report - Calculate Engine Mass Air / Fuel Flow. Using Engine Size, RPM (Varying), Volumetric Efficiency (Varying), Air/Fuel Ratio (Varying), Inlet Temperature, Barometric Pressure and Blower Pressure.

- Added Text Report - Calculate Engine Mass Air / Fuel Flow / HP. Using Engine Size, RPM (Varying), Volumetric Efficiency (Varying), Air/Fuel Ratio, BSFC (Varying), Inlet Temperature, Barometric Pressure and Blower Pressure.

ACCELER ROad HP - I made a change so that the weight and tire radius shown in Heading will be correct - It did use the correct info for the calculations.

- Added Graphing against RPM of Fuel lbs/hr, BSFC, A/F Ratio, SCFM, % VE, Un-Corrected HP, Un-Corrected Torque, and Uncorrected BMEP

- Fixed Problem in Graphing of RPS Acceleration Rate against ET where ET was not correctly shown

- 4.0.0 ----

Added Splash Screen which now requires getting an Unlock Code from me for the Program to run. Each computer will require its own unique code.

ACCELER - Increased number of Trans Gears and associated data from 10 to 18

- Added Graphing of RPS Acceleration Rate against ET

- Added If Acceleration Run is greater then 660 feet (1/8 mile) and less than 1000 feet. I will calculate 1/4 mile et Using 2 methods. Constant Velocity and coast down (Aero Dynamic Drag).

- On Road HP made a couple of column width changes when working on Top Fuel car

- Changed RPM to RPS on a Check Box, Button and a few reports where Acceleration Rate was displayed.

AIRFUEL - When Graphing Cam Lift added check if Exhaust has more lift than Intake so Graph Lift Max is set correctly

- Port Time Area 2 Report - Added new Time Area brake down groups Using Valve Seat Angle and Width to help calculate area

> Intake BTDC (IVO to TDC) Intake Pumping (TDC to BDC) Intake Ramming (BDC to IVC) Intake Overlap (IVO to EVC) Exhaust Blow-Down (EVO to BDC) Exhaust Pumping (BDC to TDC) Exhaust ATDC (TDC to EVC) Exhaust Overlap (IVO to EVC)

Cam_Gen - Added Write the Polynomial Data with the Generate Curve Data to the Output file.

COMPGAUG - Added Check Box and Text Box so User can change Max limit of "Hg or PSI on CGP/BP Graphs.

GEAR - Added Calculate Trans Gears From 10th Gear and percentage drop

Main - Increased the max number of Grid Lines from 128 to 200

— 3.34.3 —

Cam_Gen - Added Button so Lift can be sorted into ascending order. (Duration for each lift is also moved).

- Add Generate Curve Data. Unlike generating Cam data this does not sequence checking.

— 3.34.2 —

TOOLS - Added a new option to Convert S96 file(s) to CMM file format

— 3.34.1 —

ACCELER - Fixed Problem When a Graph is generated after a Trans or Rear Gear change and an Acceleration Test was not run.

- Modified the CVT calculations so that it will use about 10 times more gear ratios.

AIRFUEL - Intake Overlap (IVO to EVC) was not calculated correctly if Intake and Exhaust used different Every Degrees Values

_ Added display of Intake Valve Seat Width and Angle to the Analyze Flow Data - Text Report, Port Time Area Report and Port Time Area 2 Report

Cam_Gen - Added Generate Constant Acceleration Ramps from User supplied

Acceleration Rate, and Duration.

- Added Generate Constant Acceleration Ramps from User supplied Acceleration Rate, and Max Lift.

CUBICIN - Port Diameter fixed so it will now be convered from inches to mms.

- Graph PV adjusted Y-axis max when Metric is used

Main - Added Radio Buttons to let User Select Font Size of 10 for Graphs

TRANS - Added a large number GM Automatic gear ratios

- Added a New Menu entry for 'Automatic GM'

Made changes to most forms to the Font Type and Size (Larger) being used

Since the Print screen option only works well with the standard size forms. I have added an option to most Forms to do a screen Capture to a JPG File Format using "Alt J"

ACCELER - Added Wind Speed and Wind Direction as part of calculations

CUBICIN - On Graph of Piston Demand Port Velocity -Changed so Y-Axis high value is Calculated and not a fixed value.

- Added Graph Piston Demand - Port Depression. Using Bore, Stroke, Wrist Pin Offset, Rod Length, RPM, Port Diameter and Volumetric Efficiency.

- Made Text Report Screen full width of form.

- On Velocity Report added velocity in Feet or Meters per Minute on each line

Cam_Gen - Fixed a Problem where text in last column would not highlight

- Redid TabStop Indexing

- Fixed a Problem where after the first use the Polynomial method created the wrong lift curve

CAM_INFO - Added S L D Check Box. If Smooth Graph is checked. This will cause the lift Data to be Smoothed before being used.

CARFOR - Cam Dr file selection will now show Files C1 throw C9

CARGRAPH - Added a Print Screen / Form Capture to a JPG File Format

Main - Added to validate that a data input field was not blank and also that it is (in most cases) not zero.

Added Option for Classis (Old) Label Font and Size
 Added Option for Classis (Old) CommandButton

Font and Size

NITROUS - Added Adjustment for Nitrous Pressure into HP Calculation

 ${\rm TOOLS}\,$ - Made change so that program does not lose any data from Cam Dr files when writing data to a CMM file

Print Forms - Added Generate Cam File - About - Serial Number

— 3.33.2 —

ACCELER - On Road HP / ROad HP changed smoothing routine, also now shows smoothed Torque on Text Report

- On new Road HP Added showing Elapsed Time, Rolling Resistance HP, Total Wheel HP

CAM_INFO - Added Text Report Valve which shows Valve Lift, Velocity, Acceleration, and Jerk. If Smooth Graph is checked it will also show a generated smoothed Valve Lift. Also shows Valve Velocity in fps.

- User can now select which type of Smoothing to use

COMPGAUG - Graph change in Cylinder Pressure against change in Volumetric Efficiency. Using Bore, Rod Length, Stroke, Compression Ratio, Barometric Pressure (In Hg).

— 3.33.1 —

AIRFUEL - Can Now Enter Lambda Reading for a number of different fuels in place of Air Fuel Ratio

COMPGAUG - Added 1.48 and 1.5 to ${\bf k}$ - exponent drop down list

CUBICIN - On Crankpin Force Report - Added Crankpin / Rod Big End Acceleration and Crankpin / Rod Big End Rotational Force

— 3.33.0 —

ACCELER - On new Road HP Added showing G's

AIRFUEL - Port Flow / CSA - Fixed problem where some values for Every x caused a problem when you tried to read in a parameter file with that value.

- Text Reports will now show Parameter File Name

- Port Time Area 2 Report $\,$ - Added Total CFM Sq In for the Throat and Valve Areas and Total Max CFM Sq In

- Analyze Flow Data - Added CQU and DYM files to Read Flow Data

CAM_INFO - Added Text Report which shows Cam Lift, Velocity, Acceleration, and Jerk. If Smooth Graph is checked it will also show a generated smoothed Lift.

- Added Reading in Cam Specs from DYM (Dynomation) File

Main - Show Name of the Parameter File on Screen

- Added Radio Buttons to let User reduce Font Size used on Graphs

Tools - Added Convert DYM (Dynomation) File for Acceleration

- Fixed - Increase / Decrease Cam Lift a fixed amount - so User can enter a Negative (Decrease) number.

— 3.32.0 —

ACCELER – Added a new Road HP which does not need tire or gear ratio information. But because of this, it also generates less information that the other Road HP.

AIRFUEL - Port Time Area 2 Graphing - Added option for Piston Acceleration

- Port Time Area 2 Report - Added new Time Area brake down groups

Intake BTDC (IVO to TDC) Intake Pumping (TDC to BDC) Intake Ramming (BDC to IVC) Intake Overlap (IVO to EVC) Exhaust Blow-Down (EVO to BDC) Exhaust Pumping (BDC to TDC) Exhaust ATDC (TDC to EVC) Exhaust Overlap (IVO to EVC)

228 - CARFOR Performance Software by World Wide Enterprises

Cam_Gen - Fixed a Problem when Generate Cam Data Using Spline Calculation and a every XX of other than 1.

ET/MPH/HP - On 1/4 Split Times Added Estimate Peak and Average HP during run

Main - Replaced the Caption Top check box, with radio buttons for Top, Center, Bottom.

- Added radio buttons so side heads can be Left, Center, and Right

— 3.31.0 —

ACCELER - On Graphs Added Second line so all Transmission Gear Ratios will show

- On Graphing Screen - Text Report - User can now enter BSAC and have program using A/F Ratio calculate BSFC if BSFC is Zero

- Added a Stop Time for Time based Nitrous

- Added option to Show RPM Acceleration Rate during run

- Added Display Hood Scoop Pressure on Report if Hood Scoop is Checked.

- For Road HP and ROad HP fixed a bug. If ran Road HP or ROad HP and than ran an Acceleration run and then reran Road HP or ROad HP it could produce the wrong results. Bug was only in 3.30.0

AIRFUEL - Port Time Area 2 Report - Added for the Intake, Theoretical Cycle VE

Cam_Gen - Added Generate Cam Data Using lift and Opening and Closing numbers.

- For Generate Lift Data / O C added option to use Spline calculation.

- Added a number of new Polynomial type methods

- Modified Ellipse will now write what M E Ratio was used to the CMM file

- Fixed some problems if bad data was entered

- On some Command Buttons have added a small help text

Engine Specs - Added Option so User can supply their own Bore, Stroke, Rod Lengths, Number of Cylinders Data from a file

MAIN - Added writing most of the input data from Generate Cam File screen to the parameter file

- Changed how the Notes parameter is processed. There can now be other parameters included in the Notes data.

Tools - Added - Increase Cam Lift a fixed amount - ex. So a Lash Ramp can be added

- Added Logic so Convert PRT / Delimited File will handle 'Blank Lines'

- Added Logic so a CAPITAL 'T' will work as a TAB for Delimited files

- Increased the number of Columns from 100 to 200 per line

- Increased the number of lines from 3600 to 7200

— 3.30.0 —

ACCELER - Added 10th Transmission Gear - Made change so that Zero Roll Out works correctly

- Added Elapsed Time and MPH on Acceleration and Top Speed Prediction for 1/2 Mile, and then each KiloMeter or Mile thereafter up to 10 miles

- Graphing Screen - Added Graph RPM (X-axis) / MPH (Y-axis)

- Added some heading /information on some Graphs

- Fixed problem when using Graph Plus with the "Select Graph Line Color". When doing another Graph it had the wrong colors

AIRFUEL - Port Time Area 2 Graphing - Added option to Scale Piston Velocity

BLOWERS - Added kg/hr and m^3 /hr options

- On present tables for large values reduced number of decimal places so values do not run together.

- Added option so User can set X and Y limits for the Graphs

- Added option so User can set Max RPM for the Tables and Graphs

- Added option so User can set RPM Step for the Tables and Graphs

- Increased VE table to '27500' RPM

Cam_Gen - Added Generate Six different types of Constant Lash Ramps, Polynomial 3-4-5-6-7 'D' and 'E', Modified Ellipse.